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Goals for the lecture @

» understand the concepts
 generative/discriminative models
* MLE (Maximum Likelihood Estimate) and MAP (Maximum A Posteriori)

* Naive Bayes
« Naive Bayes assumption
« Generic Naive Bayes
* model 1: Bernoulli Naive Bayes

« Other Naive Bayes
* model 2: Multinomial Naive Bayes
* model 3: Gaussian Naive Bayes
« model 4: Multiclass Naive Bayes



Review: supervised learning

problem setting
» set of possible instances (feature space): X
« unknown target function (concept): f:X —=Y
- set of hypotheses (hypothesis class): H = {h lh:X — Y}

given
« training set of instances of unknown target function f

(Xa)’ y(”), (X(2>, y(2>) (x(’”), y(’"))

output
- hypothesis & € H that best approximates target function



Parametric hypothesis class

* hypothesis /7 € H is indexed by parameter @ € ©
* learning: find the @ such that 5, € H best approximate the target

 h,eH

C

« different from “nonparametric” approaches like decision trees and
nearest neighbor

» advantages: various hypothesis class encoding inductive bias/prior
knowledge; easy to use math/optimization



Discriminative approaches

 hypothesis /1 € H directly predicts the label given the features
v = h(x) or more generally, p(y|x)=h(x)

- then define a loss function L(/) and find hypothesis with min. loss

« example: linear regression

hy(x) =(x,0)
L(hy) =— 3 (hy(x) = )’

m



Generative approaches

 hypothesis /1 € H specifies a generative story for how the data was
created

h(x,y)=p(x,y) or simply h(x) = p(x)

* then pick a hypothesis by maximum likelihood estimation (MLE) or
Maximum A Posteriori (MAP)

« example: roll a weighted die
« weights for each side (@) define how the data are generated
» use MLE on the training data to learn @



Comments on discriminative/generative @

« usually for supervised learning, parametric hypothesis class

* can also for unsupervised learning
» k-means clustering (discriminative flavor) vs Mixture of Gaussians (generative)

 can also for nonparametric
* nonparametric Bayesian: a large subfield of ML

» when discriminative/generative is likely to be better? Discussed in later
lecture

« typical discriminative: linear regression, logistic regression, SVM, many
neural networks (not all!), ...

* typical generative: Naive Bayes, Bayesian Networks, ...



MLE and MAP
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MLE vs. MAP

Suppose we have data D = {z(V} 1V

Maximum Likelihood
Estimate (MLE)

N
OME — argmax | | p(x¥ |6
; 1;[1 (x*"]0)



Background: MLE

Example: MLE of Exponential Distribution

pdf of Exponential(\): f(z) = \e™?*

Suppose X; ~ Exponential(\) for1 <¢ < N.
Find MLE for data D = {z(V} ¥V,

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for \.
Compute second derivative and check that it is
concave down at A\ME,



Background: MLE

Example: MLE of Exponential Distribution

e First write down log-likelihood of sample.

N .

=) _log f(a'") (1)
Z;l |

= Zlog Xexp(—Az(V)) (2)

Z )+ Az (3)

— A Z z® (4)



Background: MLE

Example: MLE of Exponential Distribution

e Compute first derivative, set to zero, solve for .

(N d Al
% = —~Nlog(}) — A 2D (1)
1=1
N
N .
:X—Zx(z):() (2)
1=1
N
= A = (3)

ij;\; z(®)



MLE vs. MAP

Suppose we have data D = {z(V1N

Maximum Likelihood
Estimate (MLE)

N
OME — argmax | | p(x(? |6
= 1;[1 (x1"])

—

Prior
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Spam News

The Economist

The Onion

La paralizacion

Spain may be heading for its
third election in a year

All latest updates

Stubborn Socialists are blocking Mariano Rajoy from forming a centre-right government

Sep 5th 2016 | MADRID | Eurcpe

BACK in June, after Spain’s second indecisive election in six months, the general
expectation was that Mariano Rajoy, the prime minister, would swiftly form a new
government. Although his conservative People's Party (PP) did not win back the absolute
maijority it had lost in December, it remained easily the largest party, with 137 of the 350
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* ELECTION 2016 * MORE ELECTION COVERAGE »

Tim Kaine Found Riding Conveyor
Belt During Factory Campaign Stop

NEWS IN BRIEF
August 23, 2016
VOL 52 ISSUE 33

Politics - Politicians -
Election 2016 - Tim Kaine

AIKEN, SC—Noting that he disappeared for over an hour during a campaign stop meet-

and-greet with workers at a Bridgestone tire manufacturing plant, sources confirmed
Tuesday that Democratic vice presidential candidate Tim Kaine was finally discovered
riding on one of the factory’s conveyor belts. “Shortly after we arrived, Tim managed to
get out of our sight, but after an extensive search of the facilities, one of our interns
found him moving down the assembly line between several radial tires,” said senior

campaign advisor Mike Henry, adding that Kaine could be seen smiling and laughing as
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Model 0: Not-so-naive Model?

Generative Story:
1. Flip a weighted coin (Y)

2. If heads, sample a document ID (X) from the Spam
distribution

3. If tails, sample a document ID (X) from the Not-Spam
distribution

P(X,Y) = P(X|Y)P(Y)



Model 0: Not-so-naive Model? @

Generative Story:
1. Flip a weighted coin (Y)

2. If heads, roll the many sided die to sample a document
vector (X) from the Spam distribution

3. If tails, roll the blue many sided die to sample a document
vector (X) from the Not-Spam distribution

P(Xla'”aXKaY) :P(XlaaXKD/)P(Y)

This model is
computationally naive!




Model O: Not-so-naive Model?

Flip weighted coin

If HEADS, roll If TAILS, roll
yellow die blue die
Y Xy Xy X3 Xk
0 110 1 1
1 o|1]|o0 1
1 101 | 1 1
0 o 0| 1 1
0 110 | 1 0
1 1 10| 1 0
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Nalve Bayes Assumption

Conditional independence of features:

P(X17°°'7XK7Y) :P(XlaaXK‘Y)P(Y)

= (H P(Xk:Y)) P(Y)

k=1



Estimating a joint from conditional probabilities @

I P(4,B|C)=P(4|C)* P(B|C)

Vabc:P(A=anB=b|C=c)=P(A=a|C=c)*P(B=b|C=c)

A8 [c__|PaBO)
0 0 0

0 02 0 0 1
1 05 0 1 0
0O 08 0 1 1
1

B [C [ PEO)
0 0 041
0 1 0.9
1 0 09
1 1 0.1



Estimating a joint from conditional probabilities @

CHCCCI CCH G

0.33

1 0 08

0 0 .
1 1 05

0 0 1 0
E P(BIC) 0 1 0 0
0O 0 0.1 0 1 1 0
0 1 0.9 1 0 0 0
1 0 09 1 5 1 5
1 1 01

1 1 0 0
D |C |PDIC) 1 1 o
0O 0 0.1

0 0 0 1
o 1 0.1

0 0 1 0

1 0 0.9

1 1 0.1



Estimating a joint from conditional probabilities @

Assuming conditional independence, the conditional
probabilities encode the same information as the joint
table.

They are very convenient for estimating
P( X, ,X [Y)=P( X |Y)*...*P( X_|Y)

They are almost as good for computing

P(X, .., X,|Y)P(Y)
P(X,...X.)

P(X,.., X, =x|Y)P(Y = y)
- P(X,,... X, =X)

P(Y|X,.... X,)=

Vx,y: P(Y =y |X,,....,. X, =X)




Generic Naive Bayes Model

Support: Depends on the choice of event model, P(X,|Y)

Model: Product of prior and the event model
K
P(X,Y) = P(Y) [] P(XxlY)
k=1

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using the data. For each P(X,|Y)
we condition on the data with the corresponding class.

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)
Yy



Generic Naive Bayes Model

Classification:

y = argmax p(y|x) (posterior)
Y

o pxle()
; gy p(z)

= argmax p(x|y)p(y)
Y

(by Bayes’ rule)
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Model 1: Bernoulli Nalve Bayes

Support: Binary vectors of length K
x € {0,1}"*

Generative Story:

Y ~ Bernoulli(¢)
X ~ Bernoulli(f, y) Vk € {1,..., K}

Model: , o(xz,y) = pyo(z1,...,2x,Y)

y) H pe,. (Tk|y)

= (¢)¥(1 — ¢ (1 y)H Oy )"" 1—9ky)(1 Th)



Model 1: Bernoulli Naive Bayes W)

Flip weighted coin

If HEADS, flip each If TAILS, flip
yellow coin each blue coin
y Xp X X3 XK
@@@Q o] 1] 0] 1 1 ’...
1 o| 1|0 1
1 101 |1 1
0 O| 0| 1 1
0 1 10| 1 0
1 110 |1 0




Model 1: Bernoulli Nalve Bayes

Support: Binary vectors of length K
x € {0,1}"*
Generative Story:

Y ~ Bernoulli(¢)
X ~ Bernoulli(0y v) Vk € {1, ...

K1

Same as Generic
Naive Bayes

Model: ;5 (x,y) = (¢)V(1 — ¢)¥ L
l 2£1

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)

Y




Generic Naive Bayes Model

Classification:

y = argmax p(y|x) (posterior)
Y

o pxle()
; gy p(z)

= argmax p(x|y)p(y)
Y

(by Bayes’ rule)




Model 1: Bernoulli Nalve Bayes

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each
P(X,|Y) we condition on the data with the corresponding

lass. )
s _ X IW =1
b= N
SN Iy® =0zl =1)
Hk,() — : N .
N i ?
g~ i 1" = 1A zy) = 1)

qu;i1 I(y® = 1)
Vke{l,...,K}



Model 2: Multinomial Naive Bayes W)

Support: Integer vector (word IDs)

X = |r1,23,...,2)]| Wherez,, € {1,..., K} awordid.

Generative Story:
fori e {1,...,N}:

y" ~ Bernoulli(¢)
forj e {1,...,M;}: (Assume M; = M for all i)

:135-2) ~ Multinomial(0 ), 1)

Model:
Pe.6(T,y) Hpek (z|y)

= (¢)¥(1 — ¢)1~¥) H Oy .
j=1



Model 3: Gaussian Nalve Bayes

Support: = RK

Model: Product of prior and the event model

p(wvy) :p(CUl,---,fEpr)

Gaussian Naive Bayes assumes that p(z|y) is given by
a Normal distribution.



Model 4: Multiclass Nalve Bayes

Model:

The only change is that we permit y to range over C
classes.

p(way) :p($17'°'7$K7y)

k
Now, y ~ Multinomial(¢,1) and we have a sepa-
rate conditional distribution p(xx|y) for each of the C
classes.



Summary:. Generative Approach

« Step 1: specify the joint data distribution (generative story)
» Step 2: use MLE or MAP for training
« Step 3: use Bayes’ rule for inference on test instances



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Mark Craven, David Rage, Jude
Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan,
Tom flgietterich, and Pedro Domingos.
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