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Goals for the lecture
• understand the concepts

• generative/discriminative models 
• MLE (Maximum Likelihood Estimate) and MAP (Maximum A Posteriori)

• Naïve Bayes
• Naïve Bayes assumption
• Generic Naïve Bayes
• model 1: Bernoulli Naïve Bayes

• Other Naïve Bayes
• model 2: Multinomial Naïve Bayes
• model 3: Gaussian Naïve Bayes
• model 4: Multiclass Naïve Bayes



Review: supervised learning

problem setting
• set of possible instances (feature space):
• unknown target function (concept): 
• set of hypotheses (hypothesis class):

given
• training set of instances of unknown target function f

X

output
• hypothesis  that best approximates target functionHh∈
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Parametric hypothesis class
• hypothesis              is indexed by parameter
• learning:  find the     such that              best approximate the target

• different from “nonparametric” approaches like decision trees and 
nearest neighbor

• advantages: various hypothesis class encoding inductive bias/prior 
knowledge; easy to use math/optimization

Hh∈ Θ∈θ
θ Hh ∈θ

Θ

Hh ∈θ



Discriminative approaches
• hypothesis            directly predicts the label given the features

• then define a loss function           and find hypothesis with min. loss

• example: linear regression
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Generative approaches
• hypothesis            specifies a generative story for how the data was 

created

• then pick a hypothesis by maximum likelihood estimation (MLE) or 
Maximum A Posteriori (MAP)

• example: roll a weighted die
• weights for each side (   ) define how the data are generated
• use MLE on the training data to learn 
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or simply ℎ 𝑥𝑥 = 𝑝𝑝(𝑥𝑥)



Comments on discriminative/generative

• usually for supervised learning, parametric hypothesis class
• can also for unsupervised learning

• k-means clustering (discriminative flavor) vs Mixture of Gaussians (generative)

• can also for nonparametric
• nonparametric Bayesian: a large subfield of ML

• when discriminative/generative is likely to be better? Discussed in later 
lecture 

• typical discriminative: linear regression, logistic regression, SVM, many 
neural networks (not all!), …

• typical generative: Naïve Bayes, Bayesian Networks, …



MLE and MAP



MLE vs. MAP
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Maximum Likelihood 
Estimate (MLE)



Background: MLE

Example: MLE of Exponential Distribution
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Background: MLE

Example: MLE of Exponential Distribution
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Background: MLE

Example: MLE of Exponential Distribution
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MLE vs. MAP
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Prior

Maximum Likelihood 
Estimate (MLE)

Maximum a posteriori
(MAP) estimate



Naïve Bayes



Spam News

The Economist The Onion
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Model 0: Not-so-naïve Model?

Generative Story:
1. Flip a weighted coin (Y)
2. If heads, sample a document ID (X) from the Spam 

distribution
3. If tails, sample a document ID (X) from the Not-Spam 

distribution
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Model 0: Not-so-naïve Model?

Generative Story:
1. Flip a weighted coin (Y)
2. If heads, roll the yellow many sided die to sample a document 

vector (X) from the Spam distribution
3. If tails, roll the blue many sided die to sample a document 

vector (X) from the Not-Spam distribution
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This model is 
computationally naïve!



Model 0: Not-so-naïve Model?
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If HEADS, roll 
yellow die

Flip weighted coin

If TAILS, roll 
blue die

0 1 0 1 … 1

y x1 x2 x3 … xK

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Each side of the die 
is labeled with a 

document vector 
(e.g. [1,0,1,…,1])



Naïve Bayes Assumption

Conditional independence of features:
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Estimating a joint from conditional probabilities

A C P(A|C)

0 0 0.2

0 1 0.5

1 0 0.8

1 1 0.5

B C P(B|C)

0 0 0.1

0 1 0.9

1 0 0.9

1 1 0.1

A B C P(A,B,C)

0 0 0 …

0 0 1 …

0 1 0 …

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

C P(C)

0 0.33

1 0.67



C P(C)

0 0.33

1 0.67 A B D C P(A,B,D,C)

0 0 0 0 …

0 0 1 0 …

0 1 0 0 …

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

0 0 0 1

0 0 1 0

… … .. … …

A C P(A|C)

0 0 0.2

0 1 0.5

1 0 0.8

1 1 0.5

B C P(B|C)

0 0 0.1

0 1 0.9

1 0 0.9

1 1 0.1

D C P(D|C)

0 0 0.1

0 1 0.1

1 0 0.9

1 1 0.1

Estimating a joint from conditional probabilities
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Assuming conditional independence, the conditional 
probabilities encode the same information as the joint 
table.

They are very convenient for estimating 
P( X1,…,Xn|Y)=P( X1|Y)*…*P( Xn|Y)

They are almost as good for computing

Estimating a joint from conditional probabilities



Model: Product of prior and the event model

Generic Naïve Bayes Model
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Support: Depends on the choice of event model, P(Xk|Y)

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using the data. For each P(Xk|Y)
we condition on the data with the corresponding class.

Classification: Find the class that maximizes the posterior



Generic Naïve Bayes Model

24

Classification:



Various Naïve Bayes 
Models



Model 1: Bernoulli Naïve Bayes
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Support: Binary vectors of length K

Generative Story:

Model:



Model 1: Bernoulli Naïve Bayes
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If HEADS, flip each 
yellow coin

Flip weighted coin

If TAILS, flip 
each blue coin

0 1 0 1 … 1

y x1 x2 x3 … xK

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0
Each red coin 

corresponds to 
an xk

… …

We can generate data in 
this fashion. Though in 

practice we never would 
since our data is given. 

Instead, this provides an 
explanation of how the 

data was generated 
(albeit a terrible one).



Model 1: Bernoulli Naïve Bayes
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Support: Binary vectors of length K

Generative Story:

Model:

Classification: Find the class that maximizes the posterior

Same as Generic 
Naïve Bayes



Generic Naïve Bayes Model
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Classification:



Model 1: Bernoulli Naïve Bayes
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Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each 
P(Xk|Y) we condition on the data with the corresponding 
class.



Model 2: Multinomial Naïve Bayes
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Integer vector (word IDs)Support:

Generative Story:

Model:

(Assume 𝑀𝑀𝑖𝑖 = 𝑀𝑀 for all 𝑖𝑖)



Model 3: Gaussian Naïve Bayes
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Model: Product of prior and the event model

Support: 



Model 4: Multiclass Naïve Bayes
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Model:



Summary: Generative Approach

• Step 1: specify the joint data distribution (generative story)
• Step 2: use MLE or MAP for training
• Step 3: use Bayes’ rule for inference on test instances



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, 

Tom Dietterich, and Pedro Domingos. 
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