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Goals for the lecture
• understand the concepts

• linear regression
• closed form solution for linear regression
• regularized linear regression: ridge, lasso
• MSE, RMSE, MAE, and R-square

• logistic regression for linear classification
• gradient descent for logistic regression

• multiclass logistic regression
• cross entropy, softmax



Linear Regression



Linear regression

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷

• Find 𝑓𝑓𝑤𝑤 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 that minimizes �𝐿𝐿 𝑓𝑓𝑤𝑤 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2

𝑙𝑙2 loss; also called mean 
squared error

Hypothesis class 𝓗𝓗



Linear regression: optimization

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷

• Find 𝑓𝑓𝑤𝑤 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 that minimizes �𝐿𝐿 𝑓𝑓𝑤𝑤 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2

• Let 𝑋𝑋 be a matrix whose 𝑖𝑖-th row is 𝑥𝑥(𝑖𝑖) 𝑇𝑇, 𝑦𝑦 be the vector
𝑦𝑦(1), … ,𝑦𝑦(𝑚𝑚) 𝑇𝑇

�𝐿𝐿 𝑓𝑓𝑤𝑤 =
1
𝑚𝑚�

𝑖𝑖=1

𝑚𝑚

𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2 =
1
𝑚𝑚 ⃦𝑋𝑋𝑤𝑤 − 𝑦𝑦 2⃦

2



Linear regression: optimization

• Set the gradient to 0 to get the minimizer
𝛻𝛻𝑤𝑤 �𝐿𝐿 𝑓𝑓𝑤𝑤 = 𝛻𝛻𝑤𝑤

1
𝑚𝑚

⃦𝑋𝑋𝑤𝑤 − 𝑦𝑦 2⃦
2 = 0

𝛻𝛻𝑤𝑤[ 𝑋𝑋𝑤𝑤 − 𝑦𝑦 𝑇𝑇(𝑋𝑋𝑤𝑤 − 𝑦𝑦)] = 0

𝛻𝛻𝑤𝑤[ 𝑤𝑤𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋𝑤𝑤 − 2𝑤𝑤𝑇𝑇𝑋𝑋𝑇𝑇𝑦𝑦 + 𝑦𝑦𝑇𝑇𝑦𝑦] = 0

2𝑋𝑋𝑇𝑇𝑋𝑋𝑤𝑤 − 2𝑋𝑋𝑇𝑇𝑦𝑦 = 0

w = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦 (assume 𝑋𝑋𝑇𝑇𝑋𝑋 is invertible)



Linear regression: optimization

• Algebraic view of the minimizer
• If 𝑋𝑋 is invertible, just solve 𝑋𝑋𝑤𝑤 = 𝑦𝑦 and get 𝑤𝑤 = 𝑋𝑋−1𝑦𝑦
• But typically 𝑋𝑋 is a tall matrix

𝑋𝑋

𝑤𝑤
=
𝑦𝑦

𝑋𝑋𝑇𝑇𝑋𝑋 𝑤𝑤
=
𝑋𝑋𝑇𝑇𝑦𝑦

Normal equation: 𝑤𝑤 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝑦𝑦



Linear regression with bias

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷
• Find 𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 to minimize the loss

• Reduce to the case without bias:
• Let 𝑤𝑤′ = 𝑤𝑤; 𝑏𝑏 , 𝑥𝑥′ = 𝑥𝑥; 1
• Then 𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝑤𝑤′ 𝑇𝑇(𝑥𝑥′)

Bias term



Ridge regression

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷
• Find 𝑓𝑓𝑤𝑤 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 that minimizes

�𝐿𝐿 𝑓𝑓𝑤𝑤 =
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2
+ 𝜆𝜆| 𝑤𝑤| 2

2

• Closed form solution: 𝑤𝑤 = 𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝑚𝑚𝐼𝐼 −1𝑋𝑋𝑇𝑇𝑦𝑦

𝑙𝑙2 regularization: 𝑙𝑙2 norm of the 
parameter



Lasso regression

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷
• Find 𝑓𝑓𝑤𝑤 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 that minimizes

�𝐿𝐿 𝑓𝑓𝑤𝑤 =
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2
+ 𝜆𝜆 |𝑤𝑤| 1

lasso penalty: 𝑙𝑙1 norm of the 
parameter, encourages sparsity



• mean squared error (MSE), or Root mean squared error (RMSE)
• Mean absolute error (MAE) – average 𝑙𝑙1 error
• R-squared
• Historically all were computed on training data, and possibly 

adjusted after, but really should cross-validate

Evaluation metrics



• Recall notations: label 𝑦𝑦𝑖𝑖, prediction ℎ𝑖𝑖 = ℎ(𝑥𝑥𝑖𝑖)
• Let �̄�𝑦 be the average of 𝑦𝑦𝑖𝑖, and ℎ̄ be the average of ℎ𝑖𝑖
• Formulation 1:

• Formulation 2: 𝑟𝑟2, square of Pearson correlation coefficient 𝑟𝑟
between the label and the prediction

𝑟𝑟 =
∑𝑖𝑖(ℎ𝑖𝑖 − ℎ̄)(𝑦𝑦𝑖𝑖 − �̄�𝑦)

∑𝑖𝑖(ℎ𝑖𝑖 − ℎ̄)2 ∑𝑖𝑖(𝑦𝑦𝑖𝑖 − �̄�𝑦)2

𝑅𝑅2 = 1 −
∑𝑖𝑖 𝑦𝑦𝑖𝑖 − ℎ𝑖𝑖 2

∑𝑖𝑖(𝑦𝑦𝑖𝑖 − �̄�𝑦)2

R-squared



Summary: discriminative approach

• Step 1: specify the hypothesis class
• Step 2: specify the loss
• Step 3: design optimization algorithm for training



Linear Classification by 
Logistic Regression



Linear classification

𝑤𝑤𝑇𝑇𝑥𝑥 = 0

Class 1

Class 0

𝑤𝑤

𝑤𝑤𝑇𝑇𝑥𝑥 > 0

𝑤𝑤𝑇𝑇𝑥𝑥 < 0



Linear classification: natural attempt

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷
• Hypothesis 𝑓𝑓𝑤𝑤 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥

• 𝑦𝑦 = 1 if 𝑤𝑤𝑇𝑇𝑥𝑥 > 0
• 𝑦𝑦 = 0 if 𝑤𝑤𝑇𝑇𝑥𝑥 < 0

• Prediction: 𝑦𝑦 = step(𝑓𝑓𝑤𝑤 𝑥𝑥 ) = step(𝑤𝑤𝑇𝑇𝑥𝑥) Linear model 𝓗𝓗



Linear classification: natural attempt

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷
• Find 𝑓𝑓𝑤𝑤 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 to minimize

�𝐿𝐿 𝑓𝑓𝑤𝑤 =
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

𝕀𝕀[step(𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 ) ≠ 𝑦𝑦(𝑖𝑖)]

• Drawback: difficult to optimize
• NP-hard in the worst case

0-1 loss



Linear classification: probabilistic view

• Better approach for classification: output label probabilities
• More precisely, learn 𝑃𝑃𝑤𝑤(𝑦𝑦|𝑥𝑥) instead of 𝑦𝑦 = 𝑓𝑓𝑤𝑤 𝑥𝑥

How?
• Step 1: specify the conditional distribution 𝑃𝑃𝑤𝑤(𝑦𝑦|𝑥𝑥)
• Step 2: use (conditional) MLE or MAP to derive the loss
• Step 3: design optimization algorithm for training
• Discriminative, but use MLE/MAP to get the loss

Logistic regression is a great example of this framework
• Use a specific conditional distribution 𝑃𝑃𝑤𝑤(𝑦𝑦|𝑥𝑥) with linear 

decision boundary
• Use conditional MLE to derive the loss



Logistic regression: conditional distribution

• Notation:
Sigmoid 𝑧𝑧 = 𝜎𝜎 𝑧𝑧 =

1
1 + exp(−𝑧𝑧)

=
exp(𝑧𝑧)

1 + exp(𝑧𝑧)

• Logistic regression: learn conditional distribution 𝑃𝑃𝑤𝑤(𝑦𝑦|𝑥𝑥)

𝑃𝑃𝑤𝑤(𝑦𝑦 = 1|𝑥𝑥) = 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 =
1

1 + exp(−𝑤𝑤𝑇𝑇𝑥𝑥)

𝑃𝑃𝑤𝑤 𝑦𝑦 = 0 𝑥𝑥 = 1 − 𝑃𝑃𝑤𝑤 𝑦𝑦 = 1 𝑥𝑥 = 1 − 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥



Logistic regression: negative log-likelihood loss

• Conditional MLE:

loglikelihood 𝑤𝑤 𝑥𝑥(𝑖𝑖),𝑦𝑦(𝑖𝑖)) = log 𝑃𝑃𝑤𝑤 𝑦𝑦(𝑖𝑖) 𝑥𝑥(𝑖𝑖)

• Maximizing the log-likelihood is minimizing 

−log 𝑃𝑃𝑤𝑤 𝑦𝑦(𝑖𝑖) 𝑥𝑥(𝑖𝑖)

which is called negative log-likelihood loss

• Find 𝑤𝑤 that minimizes

�𝐿𝐿 𝑤𝑤 = −
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

log 𝑃𝑃𝑤𝑤 𝑦𝑦(𝑖𝑖) 𝑥𝑥(𝑖𝑖)

�𝐿𝐿 𝑤𝑤 = −
1
𝑚𝑚

�
𝑦𝑦(𝑖𝑖)=1

log𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖)) −
1
𝑚𝑚

�
𝑦𝑦(𝑖𝑖)=0

log[1 − 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) ]

No closed form solution;
Need to use gradient descent



Properties of sigmoid function

• Bounded
𝜎𝜎 𝑎𝑎 =

1
1 + exp(−𝑎𝑎)

∈ (0,1)

• Symmetric

1 − 𝜎𝜎 𝑎𝑎 =
exp −𝑎𝑎

1 + exp −𝑎𝑎
=

1
exp 𝑎𝑎 + 1

= 𝜎𝜎(−𝑎𝑎)

• Gradient
𝜎𝜎′(𝑎𝑎) =

exp −𝑎𝑎
1 + exp −𝑎𝑎 2 = 𝜎𝜎(𝑎𝑎)(1 − 𝜎𝜎 𝑎𝑎 )



Logistic regression: summary

• Logistic regression = sigmoid conditional distribution + MLE

More precisely:
• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷
• Training: Find 𝑤𝑤 that minimizes

�𝐿𝐿 𝑤𝑤 = −
1
𝑚𝑚

�
𝑦𝑦(𝑖𝑖)=1

log𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖)) −
1
𝑚𝑚

�
𝑦𝑦(𝑖𝑖)=0

log[1 − 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) ]

• Test: output label probabilities 
𝑃𝑃𝑤𝑤(𝑦𝑦 = 1|𝑥𝑥) = 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 =

1
1 + exp(−𝑤𝑤𝑇𝑇𝑥𝑥)



Comparison with Some 
Naïve Alternatives



Linear classification: natural attempt

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷
• Find 𝑓𝑓𝑤𝑤 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 to minimize

�𝐿𝐿 𝑓𝑓𝑤𝑤 =
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

𝕀𝕀[step(𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 ) ≠ 𝑦𝑦(𝑖𝑖)]

• Drawback: difficult to optimize
• NP-hard in the worst case

0-1 loss



Linear classification: simple approach

• Given training data 𝑥𝑥 𝑖𝑖 ,𝑦𝑦(𝑖𝑖) : 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 i.i.d. from distribution 𝐷𝐷

• Find 𝑓𝑓𝑤𝑤 𝑥𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 that minimizes �𝐿𝐿 𝑓𝑓𝑤𝑤 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖) 2

Reduce to linear regression; 
ignore the fact 𝑦𝑦 ∈ {0,1}



Linear classification: simple approach

Figure borrowed from
Pattern Recognition and
Machine Learning, Bishop

Drawback: not 
robust to “outliers”



Compare the two

𝑦𝑦 = 𝑤𝑤𝑇𝑇𝑥𝑥

𝑤𝑤𝑇𝑇𝑥𝑥

𝑦𝑦

𝑦𝑦 = step(𝑤𝑤𝑇𝑇𝑥𝑥)



Between the two

• Prediction bounded in [0,1]
• Smooth

• Sigmoid: 𝜎𝜎 𝑧𝑧 = 1
1+exp(−𝑧𝑧)



Linear classification: sigmoid prediction

• Squash the output of the linear function
Sigmoid 𝑤𝑤𝑇𝑇𝑥𝑥 = 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 =

1
1 + exp(−𝑤𝑤𝑇𝑇𝑥𝑥)

• Find 𝑤𝑤 that minimizes �𝐿𝐿 𝑓𝑓𝑤𝑤 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 ) − 𝑦𝑦(𝑖𝑖) 2

• Typically, do not work as well as logistic regression in practice



Multiple-Class Logistic 
Regression



Review: binary logistic regression

• Specify conditional probability

𝑃𝑃𝑤𝑤 𝑦𝑦 = 1 𝑥𝑥 = 𝜎𝜎 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 =
1

1 + exp(−(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏))

• How to extend to multiclass?
• Rethink how to design the conditional probability from a 

generative story



Binary logistic regression: new interpretation

• Suppose we have modeled the class-conditional densities 
𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 and class probabilities 𝑝𝑝 𝑦𝑦 = 𝑖𝑖

• Conditional probability by Bayes’ rule:

𝑝𝑝 𝑦𝑦 = 1|𝑥𝑥 =
𝑝𝑝 𝑥𝑥|𝑦𝑦 = 1 𝑝𝑝(𝑦𝑦 = 1)

𝑝𝑝 𝑥𝑥|𝑦𝑦 = 1 𝑝𝑝 𝑦𝑦 = 1 + 𝑝𝑝 𝑥𝑥|𝑦𝑦 = 2 𝑝𝑝(𝑦𝑦 = 2) =
1

1 + exp(−𝑎𝑎) = 𝜎𝜎(𝑎𝑎)

where we define 
𝑎𝑎𝑖𝑖 ≔ 𝑝𝑝 𝑥𝑥|𝑦𝑦 = 𝑖𝑖 𝑝𝑝(𝑦𝑦 = 𝑖𝑖)

𝑎𝑎 ≔ ln
𝑝𝑝 𝑦𝑦 = 1|𝑥𝑥
𝑝𝑝 𝑦𝑦 = 2|𝑥𝑥 = ln

𝑎𝑎1
𝑎𝑎2

Note: To better connect to the multiclass case, we assume 
𝑦𝑦 ∈ 1,2 instead of 𝑦𝑦 ∈ {0,1}



Binary logistic regression: new interpretation

• Suppose we have modeled the class-conditional densities 
𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 and class probabilities 𝑝𝑝 𝑦𝑦 = 𝑖𝑖

• 𝑝𝑝 𝑦𝑦 = 1|𝑥𝑥 = 𝜎𝜎 𝑎𝑎 = 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏) is equivalent to setting log 
odds to be linear:

𝑎𝑎 = ln
𝑝𝑝 𝑦𝑦 = 1|𝑥𝑥
𝑝𝑝 𝑦𝑦 = 2|𝑥𝑥

= 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏

• Why linear log odds?



Binary logistic regression: new interpretation

• Suppose the class-conditional densities 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 is normal

𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 = 𝑁𝑁 𝑥𝑥|𝜇𝜇𝑖𝑖 , 𝐼𝐼 =
1

2𝜋𝜋 𝑑𝑑/2 exp{−
1
2

𝑥𝑥 − 𝜇𝜇𝑖𝑖
2

}

• log odd is

𝑎𝑎 = ln
𝑝𝑝 𝑥𝑥|𝑦𝑦 = 1 𝑝𝑝(𝑦𝑦 = 1)
𝑝𝑝 𝑥𝑥|𝑦𝑦 = 2 𝑝𝑝(𝑦𝑦 = 2)

= 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏

where
𝑤𝑤 = 𝜇𝜇1 − 𝜇𝜇2, 𝑏𝑏 = −

1
2
𝜇𝜇1𝑇𝑇𝜇𝜇1 +

1
2
𝜇𝜇2𝑇𝑇𝜇𝜇2 + ln

𝑝𝑝(𝑦𝑦 = 1)
𝑝𝑝(𝑦𝑦 = 2)

• In summary: Normal class-conditional densities 𝑝𝑝 𝑥𝑥 𝑦𝑦 lead to 
the sigmoid conditional probability 𝑝𝑝 𝑦𝑦 𝑥𝑥 . Combining with log 
loss leads to logistic regression.



Multiclass logistic regression

• Suppose the class-conditional densities 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 is normal

𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 = 𝑁𝑁 𝑥𝑥|𝜇𝜇𝑖𝑖 , 𝐼𝐼 =
1

2𝜋𝜋 𝑑𝑑/2 exp{−
1
2

𝑥𝑥 − 𝜇𝜇𝑖𝑖
2

}

• Then conditional probability by Bayes’ rule:

𝑝𝑝 𝑦𝑦 = 𝑖𝑖|𝑥𝑥 =
𝑝𝑝 𝑥𝑥|𝑦𝑦 = 𝑖𝑖 𝑝𝑝(𝑦𝑦 = 𝑖𝑖)

∑𝑗𝑗 𝑝𝑝 𝑥𝑥|𝑦𝑦 = 𝑗𝑗 𝑝𝑝(𝑦𝑦 = 𝑗𝑗)
=

exp(𝑎𝑎𝑖𝑖)
∑𝑗𝑗 exp(𝑎𝑎𝑗𝑗)

where

𝑎𝑎𝑖𝑖 ≔ ln 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 𝑝𝑝 𝑦𝑦 = 𝑖𝑖 = −
1
2
𝑥𝑥𝑇𝑇𝑥𝑥 + 𝑤𝑤𝑖𝑖

𝑇𝑇
𝑥𝑥 + 𝑏𝑏𝑖𝑖

with 
𝑤𝑤𝑖𝑖 = 𝜇𝜇𝑖𝑖 , 𝑏𝑏𝑖𝑖 = −

1
2
𝜇𝜇𝑖𝑖𝑇𝑇𝜇𝜇𝑖𝑖 + ln 𝑝𝑝 𝑦𝑦 = 𝑖𝑖 + ln

1
2𝜋𝜋 𝑑𝑑/2



Multiclass logistic regression

• Suppose the class-conditional densities 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 is normal

𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 = 𝑁𝑁 𝑥𝑥|𝜇𝜇𝑖𝑖 , 𝐼𝐼 =
1

2𝜋𝜋 𝑑𝑑/2 exp{−
1
2

𝑥𝑥 − 𝜇𝜇𝑖𝑖
2

}

• Cancel out −1
2
𝑥𝑥𝑇𝑇𝑥𝑥 and ln 1

2𝜋𝜋 𝑑𝑑/2 , we have

𝑝𝑝 𝑦𝑦 = 𝑖𝑖|𝑥𝑥 =
exp(𝑎𝑎𝑖𝑖)

∑𝑗𝑗 exp(𝑎𝑎𝑗𝑗)
, 𝑎𝑎𝑖𝑖 ≔ 𝑤𝑤𝑖𝑖 𝑇𝑇

𝑥𝑥 + 𝑏𝑏𝑖𝑖

where
𝑤𝑤𝑖𝑖 = 𝜇𝜇𝑖𝑖 , 𝑏𝑏𝑖𝑖 = −

1
2
𝜇𝜇𝑖𝑖𝑇𝑇𝜇𝜇𝑖𝑖 + ln 𝑝𝑝 𝑦𝑦 = 𝑖𝑖



Multiclass logistic regression: summary

• Suppose the class-conditional densities 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 is normal

𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑖𝑖 = 𝑁𝑁 𝑥𝑥|𝜇𝜇𝑖𝑖 , 𝐼𝐼 =
1

2𝜋𝜋 𝑑𝑑/2 exp{−
1
2

𝑥𝑥 − 𝜇𝜇𝑖𝑖
2

}

• Then

𝑝𝑝 𝑦𝑦 = 𝑖𝑖|𝑥𝑥 =
exp( 𝑤𝑤𝑖𝑖 𝑇𝑇

𝑥𝑥 + 𝑏𝑏𝑖𝑖)
∑𝑗𝑗 exp( 𝑤𝑤𝑗𝑗 𝑇𝑇𝑥𝑥 + 𝑏𝑏𝑗𝑗)

which is the hypothesis class for multiclass logistic regression
• Training: find parameters {𝑤𝑤𝑖𝑖 ,𝑏𝑏𝑖𝑖} that minimize the negative 

log-likelihood loss

−
1
𝑚𝑚
�
𝑖𝑖=1

𝑚𝑚

log 𝑝𝑝 𝑦𝑦 = 𝑦𝑦(𝑖𝑖) 𝑥𝑥(𝑖𝑖)

• Test: given test input 𝑥𝑥, compute 𝑝𝑝 𝑦𝑦|𝑥𝑥 using the learned 
hypothesis



Summary: probabilistic view of classification

• Step 1: specify the conditional distribution 𝑝𝑝(𝑦𝑦|𝑥𝑥)
• Step 2: use conditional MLE to derive the negative log-

likelihood loss (or use MAP to derive the loss)
• Step 3: design optimization algorithm for training

• Discriminative, but use MLE/MAP to get the loss
• Example: if 𝑝𝑝(𝑦𝑦|𝑥𝑥) is sigmoid, then we get binary logistic 

regression



Summary: from generative to discriminative 

• Step 0: specify 𝑝𝑝 𝑥𝑥 𝑦𝑦 and 𝑝𝑝(𝑦𝑦)
• Step 1: compute 𝑝𝑝(𝑦𝑦|𝑥𝑥) using Bayes’ rule
• Step 2: use conditional MLE to derive the negative log-

likelihood loss (or use MAP to derive the loss)
• Step 3: design optimization algorithm for learning

• Discriminative, but use a generative story to get the hypothesis 
class and the loss

• Example: if 𝑝𝑝(𝑥𝑥|𝑦𝑦) are normal distributions, then we get logistic 
regression



Comments 

Generative v.s. Discriminative
• If directly estimate the parameters in 𝑝𝑝 𝑥𝑥 𝑦𝑦 and 𝑝𝑝(𝑦𝑦): 

generative approaches
• If use 𝑝𝑝 𝑥𝑥 𝑦𝑦 and 𝑝𝑝(𝑦𝑦) to derive the hypothesis class 𝑝𝑝(𝑦𝑦|𝑥𝑥) and 

estimate the parameters in 𝑝𝑝(𝑦𝑦|𝑥𝑥): discriminative approaches
• Will compare the two approaches in later lectures

MLE v.s. MAP
• We have used MLE to derive the training losses
• MAP can also be used; the prior typically leads to a 

regularization term (e.g., Normal priors lead to ℓ2 norm 
regularizations)

Justifying the log loss
• We have seen generative stories 𝑝𝑝(𝑥𝑥,𝑦𝑦) can help 

determine/justify what hypothesis classes to use
• Why use negative log-likelihood loss? 



Notion: Cross entropy 

• Let 𝑞𝑞(𝑖𝑖) = 𝑝𝑝data(𝑦𝑦(𝑖𝑖)|𝑥𝑥(𝑖𝑖)) denote the empirical label probabilities
• i.e.,𝑞𝑞(𝑖𝑖) is the one-hot vector for 𝑦𝑦(𝑖𝑖)

• Let 𝑝𝑝 𝑖𝑖 = 𝑝𝑝 𝑦𝑦 𝑥𝑥 𝑖𝑖 denote the predicted label probabilities

• Negative log-likelihood (for 𝐾𝐾 classes)

− log𝑝𝑝 𝑦𝑦 = 𝑦𝑦 𝑖𝑖 𝑥𝑥 𝑖𝑖 = −�
𝑗𝑗=1

𝐾𝐾

𝑞𝑞𝑗𝑗
𝑖𝑖 log𝑝𝑝 𝑦𝑦 = 𝑗𝑗 𝑥𝑥 𝑖𝑖 = 𝐻𝐻(𝑞𝑞 𝑖𝑖 ,𝑝𝑝 𝑖𝑖 )

is the cross entropy between data 𝑞𝑞(𝑖𝑖) and prediction 𝑝𝑝(𝑖𝑖)

• Information theory viewpoint: KL divergence

𝐷𝐷(𝑞𝑞 𝑖𝑖 ||𝑝𝑝 𝑖𝑖 ) = E𝑞𝑞 𝑖𝑖 [log𝑝𝑝 𝑖𝑖 ] − E𝑞𝑞 𝑖𝑖 [log 𝑞𝑞 𝑖𝑖 ]

Cross entropy Entropy; constant



Notion: Softmax

• Recall 

𝑝𝑝 𝑦𝑦 = 𝑖𝑖|𝑥𝑥 =
exp( 𝑤𝑤𝑖𝑖 𝑇𝑇

𝑥𝑥 + 𝑏𝑏𝑖𝑖)
∑𝑗𝑗 exp( 𝑤𝑤𝑗𝑗 𝑇𝑇𝑥𝑥 + 𝑏𝑏𝑗𝑗)

• It is softmax on linear transformation

• A way to squash 𝑎𝑎 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑖𝑖 , … ) into probability vector 𝑝𝑝

softmax 𝑎𝑎 =
exp(𝑎𝑎1)
∑𝑗𝑗 exp(𝑎𝑎𝑗𝑗)

,
exp(𝑎𝑎2)
∑𝑗𝑗 exp(𝑎𝑎𝑗𝑗)

, … ,
exp 𝑎𝑎𝑖𝑖

∑𝑗𝑗 exp 𝑎𝑎𝑗𝑗
, …

• Behave like max: when 𝑎𝑎𝑖𝑖 ≫ 𝑎𝑎𝑗𝑗 ∀𝑗𝑗 ≠ 𝑖𝑖 , 𝑝𝑝𝑖𝑖 ≅ 1,𝑝𝑝𝑗𝑗 ≅ 0



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, 

Tom Dietterich, and Pedro Domingos. 
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