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Goals for the lecture

» understand the concepts
* linear regression
» closed form solution for linear regression
* regularized linear regression: ridge, lasso
- MSE, RMSE, MAE, and R-square

* logistic regression for linear classification
- gradient descent for logistic regression

» multiclass logistic regression
* cross entropy, softmax
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Linear regression @

- Given training data {(xV,y(¥): 1 < i < m} i.i.d. from distribution D

* Find f,,(x) = w”x that minimizes L(f,,) = % mwTx® — y("))2




Linear regression: optimization @

- Given training data {(xV,y®):1 < i < m} i.i.d. from distribution D
» Find f;, (x) = wTx that minimizes L(f;,) = =X (wTx® — y(i))2

* Let X be a matrix whose i-th row is (x®)", y be the vector
(y(l) S )
L(f) = Z(w x® — yO) =~ jixw — y 3



Linear regression: optimization

« Set the gradient to 0 to get thle minimizer
Vw Z:(fw) = VWE”XW _}/“% =0

Vwl(Xw —y)' (Xw —y)] =0
Vy[wlXTXw —2wiXTy +yTy] =0
2XTXw — 2XTy = 0

w=(XTXx)"1xT (assume X' X is invertible)
y



Linear regression: optimization @

* Algebraic view of the minimizer
- If X is invertible, just solve Xw =y andgetw = X1y
 But typically X is a tall matrix

III —».}I

Normal equation: w = (XTX) " 1xTy




Linear regression with bias @

- Given training data {(x”,y®): 1 < i < m} i.i.d. from distribution D
* Find f, ,(x) = w'x + b to minimize the loss

 Reduce to the case without bi
e Letw’ = [w; b],x" = [x; 1]
* Then f,, ,(x) =wlx +b = W) (x")




Ridge regression @

- Given training data {(x”,y®): 1 < i < m} i.i.d. from distribution D

e Find f;,(x) = w!x that minimizes
m

~ 1 . 2
L(f) = = > (WTx® = y®)° + Aljwl3

i=1

* Closed form solution: w = (X'X + AmI)~ X"y



Lasso regression @

- Given training data {(x”,y®): 1 < i < m} i.i.d. from distribution D
e Find f,,(x) = w!x that minimizes

m

~ 1 . 2

L(f) = — ) (wTx® = y©)” + Aljwll,
i=1




Evaluation metrics @

* mean squared error (MSE), or Root mean squared error (RMSE)
« Mean absolute error (MAE) — average [, error
* R-squared

» Historically all were computed on training data, and possibly
adjusted after, but really should cross-validate



R-squared

» Recall notations: label y;, prediction h; = h(x;)
- Let y be the average of y;, and h be the average of h;
* Formulation 1:

(i - hi)?
2y — y)?

« Formulation 2: 2, square of Pearson correlation coefficient r
between the label and the prediction

Yi(hi =) (i — )

r =
szhi 2 S0r =)

R?=1




Summary: discriminative approach

« Step 1: specify the hypothesis class
« Step 2: specify the loss
« Step 3: design optimization algorithm for training
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Linear classification: natural attempt @

- Given training data {(x”,y®): 1 < i < m} i.i.d. from distribution D

* Hypothesis f,,(x) = w!x
cy=1ifwix >0

cy=0ifwlix <0
* Prediction: y = step(f,,(x)) = step(w’x)



Linear classification: natural attempt @

- Given training data {(x”,y®): 1 < i < m} i.i.d. from distribution D
e Find f;,(x) = w’x to minimize

m
- 1 . .
L(f) = — ) Tlstep(w™x®) # y©]
=1

« Drawback: difficult to optimize
* NP-hard in the worst case




Linear classification: probabilistic view

 Better approach for classification: output label probabilities
» More precisely, learn P,,(y|x) instead of y = f,, (x)

How?

« Step 1: specify the conditional distribution B, (y|x)

« Step 2: use (conditional) MLE or MAP to derive the loss
« Step 3: design optimization algorithm for training

* Discriminative, but use MLE/MAP to get the loss

Logistic regression is a great example of this framework

» Use a specific conditional distribution P, (v|x) with linear
decision boundary

* Use conditional MLE to derive the loss



Logistic regression: conditional distribution @

* Notation:
1 _exp(2)
1+ exp(—=z) 1+ exp(2)

Sigmoid(z) = a(z) =

sigmoid

 Logistic regression: learn conditional distribution B, (v|x)

1

Py(y =1|x) =o(w'x) = 1+ exp(—wTx)

P,(y=0|x)=1—-PF,(y=1]x) =1 —-a(w'x)



Logistic regression: negative log-likelihood loss @

 Conditional MLE:
loglikelihood(w|x®, y®) = log B, (y®|x®)
» Maximizing the log-likelihood is minimizing

—log pw(y(i)|x(i))
which is called negative log-likelihood loss

 Find w that minimizes /_

m
- 1 N
L(w) = — ~ log P, (y®|x®)
=1

i

L(w) = —% z loga(wT x(®) —% z log[1 — a(wTx®)]

y(i)zl y(i)zo



Properties of sigmoid function

* Bounded .
ola) = 1+ exp(—a) €01
« Symmetric
_exp(-a) 1 3
=@l = 1+exp(—a) exp(a)+1 o(-a)
» Gradient

exp(—a)

7D =TT expca))?

=o0(a)(1-o(a))




Logistic regression: summary @

* Logistic regression = sigmoid conditional distribution + MLE

More precisely:
- Given training data {(xV,y(¥): 1 < i < m} i.i.d. from distribution D
 Training: Find w that minimizes

- 1 . 1 .
L(w) = —— z logo(wTxW) — — z log[1 — a(wTx®)]
m £ m 4
y(l)zl y(l)z()
 Test: output label probabilities

1
Py(y =1|x) = o(w'x) =

1+ exp(—wTx)
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Linear classification: natural attemp

- Given training data {(x”,y®): 1 < i < m} i.i.d. from distribution D
e Find f;,(x) = w’x to minimize

m
- 1 . .
L(f) = — ) Tlstep(w™x®) # y©]
=1

« Drawback: difficult to optimize
* NP-hard in the worst case




Linear classification: simple approach @

- Given training data {(x”,y®): 1 < i < m} i.i.d. from distribution D
+ Find £, (x) = w”x that minimizes L(f,) = ~ Y™, (wx® — y©)*

m




Linear classification: simple approach

0
67 61 & 1 Figure borrowed from
o P .
Pattern Recognition and
B | -8 1 Machine Learning, Bishop
-4 2 0 2 4 6 8 -4 2 0 2 4 6 8

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when exira data points are added at the bottom left of the diagram, showing that least squares is highly sensitive

to outliers, unlike logistic regression.



Compare the two

y = step(w!x)




Between the two

* Prediction bounded in [0,1]
« Smooth

1
1+exp(—2z)

» Sigmoid: o(z) =

sigmoid

10



Linear classification: sigmoid prediction

« Squash the output of the linear function .

1+ exp(—wTx)

Sigmoid(w’x) = o(wlx) =

« Find w that minimizes L(f,,) = — ml(G(W x) — y(l))

 Typically, do not work as well as logistic regression in practice



" g

10

Class

Iple-
Regress

Mult




Review: binary logistic regression

« Specify conditional probability
1
1+ exp(—(wlx + b))

P,(y =1|x) = oc(wlx + b) =

 How to extend to multiclass?

 Rethink how to design the conditional probability from a
generative story



Binary logistic regression: new interpretation @

» Suppose we have modeled the class-conditional densities
p(x|y = i) and class probabilities p(y = i)

 Conditional probability by Bayes’ rule:

pixly=Dpy =1) _ 1
pxly=Dply =1 +pk|ly=2)p(y =2) 1+exp(—a)

p(y =1lx) = =o(a)

where we define
a; =plx|ly =Dp(ly =1i)

py =14 &

a = In = In
p(y = 2|x) a,

Note: To better connect to the multiclass case, we assume
y € {1,2} instead of y € {0,1}



Binary logistic regression: new interpretation @

» Suppose we have modeled the class-conditional densities
p(x|y = i) and class probabilities p(y = i)

*p(y =1|x) = o(a) = o(w'x + b) is equivalent to setting log
odds to be linear:

p(y =1lx)

n =wlx+b
p(y = 2|x)

a =1

* Why linear log odds?



Binary logistic regression: new interpretation

« Suppose the class-conditional densities p(x|y = i) is normal

_ 1 1 2
p(xly =1) = N(x|u;, 1) = (2)4/2 exp{—§||x —Mi|| }

*log odd is

xly =1 =1
a_lp( ly=Dply =1) N S

p(xly = 2)p(y = 2)

where ( )

1 1 p(y=1
= — , b:—— T — T l

W= U — U 2,1,11,u1+2,u2u2+ np(y=2)

* In summary: Normal class-conditional densities p(x|y) lead to
the sigmoid conditional probability p(y|x). Combining with log
loss leads to logistic regression.



Multiclass logistic regression

« Suppose the class-conditional densities p(x|y = i) is normal

_ 1 1 2
p(xly =1) = N(x|u;, 1) = (2)4/2 eXP{_E“x —Mi|| }

» Then conditional probability by Bayes’ rule:
pixly=0p(y =19 _ exp(a)
Lipxly =Dply=j) X;exp(a))

p(y =ilx) =

where
T

1 |
a; =In[plxly = Dp(y = )] = —ox"x + (w') x + b’

| 1
wt=p;,  b'=—spufp+Inply =i)+In

2 (2m)4/?



Multiclass logistic regression

« Suppose the class-conditional densities p(x|y = i) is normal

_ 1 1 2
p(xly =1) = N(x|u;, 1) = (2)4/2 eXp{_EHx —Mi|| }

- Cancel out — = x"x and In ———, we have
2 (2m)4/2
. exp(a;) T -
(y =ilx) = , a; = (w') x+b'
ply | Z] exp(aj) l ( )
where "
wt=p,  b'=—sup+Inply =10

2



Multiclass logistic regression: summary @

« Suppose the class-conditional densities p(x|y = i) is normal

_ 1 1 2
p(xly =1i) = N(x|u;, 1) = (2)4/2 eXP{_EHx —lii|| }

* Then

exp( (Wi)TX + b))

jexp((w/)Tx + b7)

which is the hypothesis class for multiclass logistic regression

- Training: find parameters {w', b'} that minimize the negative
log-likelihood loss

m
1 o
1 ENOING
mi;logp(y yWO|x W)

» Test: given test input x, compute p(y|x) using the learned
hypothesis

p(y =i|x) =3



Summary: probabilistic view of classification @

« Step 1: specify the conditional distribution p(y|x)

« Step 2: use conditional MLE to derive the negative log-
likelihood loss (or use MAP to derive the loss)

« Step 3: design optimization algorithm for training

* Discriminative, but use MLE/MAP to get the loss

« Example: if p(y|x) is sigmoid, then we get binary logistic
regression



Summary: from generative to discriminative @

« Step 0: specify p(x|y) and p(y)
« Step 1: compute p(y|x) using Bayes’ rule

« Step 2: use conditional MLE to derive the negative log-
likelihood loss (or use MAP to derive the loss)

» Step 3: design optimization algorithm for learning

 Discriminative, but use a generative story to get the hypothesis
class and the loss

« Example: if p(x|y) are normal distributions, then we get logistic
regression



Comments

Generative v.s. Discriminative

« If directly estimate the parameters in p(x|y) and p(y):
generative approaches

* If use p(x|y) and p(y) to derive the hypothesis class p(y|x) and
estimate the parameters in p(y|x): discriminative approaches

« Will compare the two approaches in later lectures

MLE v.s. MAP
* We have used MLE to derive the training losses

* MAP can also be used; the prior typically leads to a
regularization term (e.g., Normal priors lead to £, norm
regularizations)

Justifying the log loss

* We have seen generative stories p(x, y) can help
determine/justify what hypothesis classes to use

« Why use negative log-likelihood loss?



Notion: Cross entropy

e Let g9 = paaea (¥ P x®) denote the empirical label probabilities
« i.e.,q" is the one-hot vector for y®

- Let p© = p(y|x) denote the predicted label probabilities

* Negative log-likelihood (forK K classes)

—logp(y =y |xV) = —z q;” logp(y = j]x®) = H(q®,p®)
j=1

is the cross entropy between data ¢(*) and prediction p®

* Information theory viewpoint: KL divergence

D(q®|Ip®) = E, w[logp”] — E_w[logq"")]
| Y J | y
Cross entropy Entropy; constant

o



Notion: Softmax

* Recall

exp( (Wi)Tx + bY)
jexp((w/)Tx + b7)
* |t is softmax on linear transformation

p(y =i|x) =3

 Away to squash a = (a4, a,, ..., a;, ...) into probability vector p

exp(a;)  exp(ay) exp(a;) )

softmax(a) = (Zj =) , Zj ==CH e, Zj exp(aj) s

- Behave like max: when a; > a;(Vj #i),p; = 1,p; =0



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Mark Craven, David Rage, Jude
Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan,
Tom flgietterich, and Pedro Domingos.
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