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1 Overview

In the previous lecture, we showed how 3-layer-neural-networks with ReLU activation func-
tion can approximate high-dimension Lipschitz function family with small approximation
error. In this lecture, we will shift our attention to universal approximation.

2 Universal Approximation

Definition 1 (Universal Approximation). For a class of functions F and a compact set
S Ă Rd, if for every continuous function g on S and for any ϵ ą 0, there exists f P F such
that }f ´ g}8 :“ maxxPS |fpxq ´ gpxq| ď ϵ. Then, the class of functions F is a universal
approximator of all continuous functions on S.

The following theorem characterizes the universal approximator.

Theorem 2 (Stone-Weierstrauss Theorem (limited version)). Let F be a class of functions
defined on a compact set S Ă Rd. If F satifies:

1. Each f P F is continuous.

2. For every x, there exists f P F such that fpxq ‰ 0.

3. For every x,x1 with x ‰ x1, there exists f P F such that fpxq ‰ fpx1q (F separates
points).

4. F is closed under multiplication (@f, g P F , we have h P F and hpxq “ fpxqgpxq) and
vector space operations (F is an algebra).

Then, for every continuous function g : Rd ÞÑ R, and any ϵ ą 0, there exists f P F such that
}f ´ g}8 ď ϵ. In other words, F is a universal approximator.

Remark 3. It is easy to see that Conditions 2 and 3 are necessary. If remove Condition
2, there exist x such that @f P F , fpxq “ 0. Then we could not approximate functions
g with gpxq ‰ 0. If remove Condition 3, there exist x,x1, with x ‰ x1 , so that @f P

F , fpxq “ fpx1q. Then we could not approximate functions g with gpxq ‰ gpx1q since
}f ´ g}8 ě maxt|fpxq ´ gpxq|, |fpx1q ´ gpx1q|u ą 0.

We now discuss universal approximation with infinitely wide neural networks with a sin-
gle hidden layer, beginning with some preliminaries. Consider the following definition for

1



1-hidden layer neural network function classes with nonlinear activation σ, input dimension-
ality d, and hidden layer width m.

Fσ,d,m “ tx ÞÑ aσpWx ` bq, a P R1ˆm,W P Rmˆd, b P Rm
u.

We then define the infinitely wide class of one hidden layer neural networks as follows:

Fσ,d “
ď

mě0

Fσ,d,m.

Now, we prove Fexp,d and Fcos,d are two universal approximators, by checking the Stone-
Weierstrass conditions.

Example 4. Prove Fexp,d is a universal approximator.

Proof. We need to verify the four conditions of the Stone-Weierstrass theorem.

1. Each f P Fexp,d is continuous.

2. @x, fxpzq “ exppxJzq ‰ 0 at z “ x.

3. For every x,x1 with x ‰ x1, consider the linear function h:

hpzq “
pz ´ xqJpx1 ´ xq

}x1 ´ x}22
.

Then hpxq “ 0 and hpx1q “ 1. Now let

fpzq “ expphpzqq “ exp

ˆ

pz ´ xqJpx1 ´ xq

}x1 ´ x}22

˙

.

Thus, fpxq “ 1 ‰ e “ fpx1q.

4. @f, g P Fexp,d, @α P R, suppose fpxq “ afσpWfx ` bf q, gpxq “ agσpWgx ` bgq.
(i) We have αf P Fexp,d.
(ii)

f ` g “ raf , agsσ

ˆ„

Wf

Wg

ȷ

x `

„

bf
bg

ȷ˙

.

Thus, f ` g P Fexp,d.
(iii)

f ¨ gpxq “

˜

mf
ÿ

i“1

afi exppxWfi,xy ` bfiq

¸ ˜

mg
ÿ

j“1

agj exppxWgj,xy ` bgjq

¸

“

˜

mf
ÿ

i“1

mg
ÿ

j“1

afiagj exppxWfi ` Wgj,xy ` bfi ` bgjq

¸

.

Thus, f ¨ g P Fexp,d.
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Based on the above four conditions, as a result of the Stone-Weierstrass theorem, Fexp,d is a
universal approximator.

Example 5. Prove Fcos,d is a universal approximator. In particular, the cosine function has
the helpful property 2 cospαq cospβq “ cospα`βq ` cospα´βq. This allows for multiplicative
closure of elements in Fcos,d: by multiplying two neural networks together, we obtain a third
neural network, which implies that @f, g P Fcos,d, f ¨ g P Fcos,d.

Proof. We only prove multiplicative closure for Fcos,d. The proof of all other conditions is
similar in Example 4.

@f, g P Fcos,d, suppose fpxq “ afσpWfx ` bf q, gpxq “ agσpWgx ` bgq,

f ¨ gpxq “

˜

mf
ÿ

i“1

afi cospxWfi,xy ` bfiq

¸ ˜

mg
ÿ

j“1

agj cospxWgj,xy ` bgjq

¸

“

˜

mf
ÿ

i“1

mg
ÿ

j“1

afiagj
1

2
pcospxWfi ` Wgj,xy ` bfi ` bgjq ` cospxWfi ´ Wgj,xy ` bfi ´ bgjqq

¸

.

Thus, f ¨ g P Fcos,d.

For arbitrary activation functions, we have the following theorem.

Theorem 6 (Hornik, Stinchcombe, and White 1989). Suppose σ : R ÞÑ R is continuous,
and satisfies

lim
zÑ´8

σpzq “ 0, lim
zÑ`8

σpzq “ 1.

Then Fσ,d is a universal approximator.

This theorem provides us with a useful tool to prove a function class with arbitrary
activation to be universal, not directly via the Stone-Weierstrass theorem.

Since its proof is part of the homework, we skip the proof here. A sketch of the proof could
be: Given ϵ ą 0 and continuous g, pick h P Fcos,d (or, Fexp,d ) with supxPr0,1sd hpxq ´ gpxq ď

ϵ{2. To finish, replace all appearances of cos with an element of Fσ,1.

Remark 7. Note that FReLU,d is also a universal approximator based on Theorem 6. In
particular, we can build an intermediate activation σ1pzq “ ReLUpzq ´ ReLUpz ´ 1q, which
satisfies the conditions of the above theorem. By Fσ1,d Ă FReLU,d, we have FReLU,d is a
universal approximator.

3 Infinite-width Networks

In the next section of this lecture, we introduced how to represent the target function as an
infinite-width network via Fourier inversion. Before that, we first provide a definition for
integral representation of infinite-width networks and then take a brief review of the Fourier
transform.
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Definition 8. An infinite-width shallow network is characterized by a signed measure ν
(can be negative) over weight vectors in RP :

x ÞÑ

ż

σpwJxqdνpwq.

We can alternatively write the derivative of the measure as a function of w:

x ÞÑ

ż

σpwJxqgpwqdw,

where dνpwq “ gpwqdw.

Example 9. Suppose w P tw1,w2u and gpw1q “ 1
2
, gpw2q “ ´1. Then

ş

σpwJxqgpwqdw “
1
2
σpwJ

1 xq ´ σpwJ
2 xq.

3.1 Review Fourier Transformation

Definition 10. Let Lp be the function class such that f P Lp iff r
ş

|fpxq|pdxs1{p ă `8. If
f P L1 , the Fourier transform of f is:

f̂pwq :“

ż

expp´2πiwJxqfpxqdx.

If f P L1, and f̂ P L1 , the Fourier inversion is defined as:

f 1
pxq :“

ż

expp2πiwJxqf̂pwqdw.

In Definition 10, fpxq could be viewed as an infinite-width complex-valued neural network
function. Since exppizq “ cospzq ` i sinpzq, the real part of fpxq is defined as:

f̄pxq “ Repf 1
pxqq “

ż

cosp2πwJxqf̂pwqdw.

Next lecture, we will rewrite the target function as two infinite-width networks with
standard threshold activations, using the Fourier transforms in the weighting measure.
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