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1 Overview

In the previous lecture, we showed how 3-layer-neural-networks with ReLLU activation func-
tion can approximate high-dimension Lipschitz function family with small approximation
error. In this lecture, we will shift our attention to universal approximation.

2 Universal Approximation

Definition 1 (Universal Approximation). For a class of functions F and a compact set
S < R4, if for every continuous function g on S and for any € > 0, there exists f € F such
that |f — g]o := maxxes |f(x) — g(x)| < e. Then, the class of functions F is a universal
approximator of all continuous functions on S.

The following theorem characterizes the universal approximator.

Theorem 2 (Stone-Weierstrauss Theorem (limited version)). Let F be a class of functions
defined on a compact set S = R If F satifies:

1. Each f e F is continuous.
2. For every x, there exists f € F such that f(x) # 0.

3. For every x,x’ with x # X/, there exists f € F such that f(x) # f(x') (F separates
points).

4. F is closed under multiplication (Vf, g € F, we have h € F and h(x) = f(x)g(x)) and
vector space operations (F is an algebra).

Then, for every continuous function ¢ : R¢ — R, and any € > 0, there exists f € F such that
|f — gllw < €. In other words, F is a universal approximator.

Remark 3. It is easy to see that Conditions 2 and 3 are necessary. If remove Condition
2, there exist x such that Vf € F, f(x) = 0. Then we could not approximate functions
g with g(x) # 0. If remove Condition 3, there exist x,x’, with x # x| so that Vf €
F,f(x) = f(x'). Then we could not approximate functions ¢ with g(x) # g(x’) since

If = 9\\oo_> max{[f(x) —g(x)], |f(x) = g(x)[} > 0.

We now discuss universal approximation with infinitely wide neural networks with a sin-
gle hidden layer, beginning with some preliminaries. Consider the following definition for



1-hidden layer neural network function classes with nonlinear activation o, input dimension-
ality d, and hidden layer width m.

Fodm = {x+— ac(Wx +b),ae R W e R™% be R™}.
We then define the infinitely wide class of one hidden layer neural networks as follows:

Foa=|J Foam

m=0

Now, we prove Fexpq and Feos g are two universal approximators, by checking the Stone-
Weierstrass conditions.

Example 4. Prove F., 4 is a universal approximator.

Proof. We need to verify the four conditions of the Stone-Weierstrass theorem.
1. Each f € Fexpa is continuous.
2. Vx, fx(z) = exp(x'z) # 0 at z = x.
3. For every x,x’ with x # X', consider the linear function h:

(z—x)'(x' —x)

% —x|3

h(z) =

Then h(x) = 0 and h(x’) = 1. Now let

fa) = explnz) = exp (5 x) [ 9).

% —x|3
Thus, f(x) =1# e = f(X/).

4. Vf, g € Fexpa, Vo € R, suppose f(x) = ayo(Wx + by), g(x) = a;o0(Wyx + by).
(i) We have af € Foxp a-

(i)
poretonn (e )

ThU.S, f + g € fexp,d-
(i)

frg(x) = (Z asi exp((Wyi, x) + bfi)> (i ag; exp((W;, x) + bgj))

i=1 j=1

mf mg
= (Z D agiag; exp((Wp; + W, x) + by; + bw)) :

i=1j=1

Thus, f - g€ Fexp.d-



Based on the above four conditions, as a result of the Stone-Weierstrass theorem, Fexp 4 is @
universal approximator. O

Example 5. Prove F 4 is a universal approximator. In particular, the cosine function has
the helpful property 2 cos(a) cos(5) = cos(a+ ) + cos(aw— ). This allows for multiplicative
closure of elements in F.q 4: by multiplying two neural networks together, we obtain a third
neural network, which implies that Vf, g € Feosa, f - 9 € Feosd-

Proof. We only prove multiplicative closure for F..s 4. The proof of all other conditions is
similar in Example 4.
Vf,9 € Feosd, suppose f(x) = aro(Wx + by), g(x) = a,0(Wyx + by),

frg(x) = (Z agi cos((W i, x) + bfi)) (i ag; cos((W;, x) + bgj))

i=1 j=1

mf mg 1
= (Z > afigjs (cos(CW i + Wi X) + byi + byj) + cos((Wyi — W, %) + bri — by;))

i=1j=1
Thus, f g€ Feosd- m
For arbitrary activation functions, we have the following theorem.

Theorem 6 (Hornik, Stinchcombe, and White 1989). Suppose ¢ : R — R is continuous,
and satisfies

lim o(z) =0, lim o(z) = 1.
z—>—00 Z—+00

Then F, 4 is a universal approximator.

This theorem provides us with a useful tool to prove a function class with arbitrary
activation to be universal, not directly via the Stone-Weierstrass theorem.

Since its proof is part of the homework, we skip the proof here. A sketch of the proof could
be: Given € > 0 and continuous g, pick h € Fepsa (01, Fexpa ) With supyepg 172 (%) — g(x) <
¢/2. To finish, replace all appearances of cos with an element of F, ;.

Remark 7. Note that Freruq is also a universal approximator based on Theorem 6. In
particular, we can build an intermediate activation oq(z) = ReLU(z) — ReLU(z — 1), which
satisfies the conditions of the above theorem. By F,, 4 © FreLua, We have Frerugq is a
universal approximator.

3 Infinite-width Networks

In the next section of this lecture, we introduced how to represent the target function as an
infinite-width network via Fourier inversion. Before that, we first provide a definition for
integral representation of infinite-width networks and then take a brief review of the Fourier
transform.

) |



Definition 8. An infinite-width shallow network is characterized by a signed measure v
(can be negative) over weight vectors in R” :

X > J o(wx)dv(w).

We can alternatively write the derivative of the measure as a function of w:

x> | aw x)g(w)dw,

where dv(w) = g(w)dw.

Example 9. Suppose w € {w1,w»} and g(w;) = 3, g(ws) = —1. Then §o(w'x)g(w)dw =

1o(w{x) — o(w]x).

3.1 Review Fourier Transformation

Definition 10. Let L? be the function class such that f e L? iff [{|f(z)Pdz]"? < +o0. If
f e L' the Fourier transform of f is:

~

f(w) = J exp(—2miw ' x) f(x)dx.

If fe L', and fe L', the Fourier inversion is defined as:

~

(%) := Jexp(Zm’wa)f(w)dw,

In Definition 10, f(x) could be viewed as an infinite-width complex-valued neural network
function. Since exp(iz) = cos(z) + isin(z), the real part of f(x) is defined as:

~

f(z) = Re(f'(x)) = JCOS(QWWTX)f(W)dW.

Next lecture, we will rewrite the target function as two infinite-width networks with
standard threshold activations, using the Fourier transforms in the weighting measure.



