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1 Overview

In previous lecture, we covered the approximation power of neural networks. Recall that we
decomposed the risk into three parts: approximation, estimation/generalization and opti-
mization. We also have a conjecture that the optimization has some implicit regularization
effect that restricts the learning dynamics to a subset of the whole hypothesis class. In
this lecture, we will start to study implicit regularization of gradient decent optimization in
training dynamic of neural networks.

2 Basics in Optimization

2.1 Optimization Problem

Let S “ tpxi, yiquni“1 be the training set, each pxi, yiq is a pair of training data point with
xi being the feature vector and yi being the label, and fw is a neural network function
parameterized by w. Let Lpwq be the training loss of some neural network parameterized
by w:

Lpwq “
1

n

n
ÿ

i“1

lpfwpxiq, yq.

(Usually, Lpwq denotes the expected loss and LSpwq denote the training loss. Here for
simplicity, we let Lpwq denote the training loss.)

2.2 Gradient Descent

Gradient descent is one of the simplest algorithms to solve the optimization problem.

1. Initially, we set the parameter to w0.

2. Then at the t-th step, we iteratively update the parameter wt`1 “ wt ´ ηt∇Lpwtq for
t “ 0, 1, . . .

Specifically, in each iteration, we walk along the negation of the gradient direction, with a
step size of ηt ą 0 (a.k.a. learning rate in deep learning).

2.3 Gradient Flow (gradient descent with infinitesimal step size)

Sometimes we want a smoothness property, and we can analyze the gradient flow instead in
this case. It can be viewed as a gradient descent update with infinitesimal step size, i.e., we
let ηt Ñ 0. Gradient flow can be written as an ordinary differential equation (ODE):
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1. w0 “ wp0q.

2. t P Rě0,
dwptq
dt

:“ 9wptq “ ´∇Lpwptqq.

where we take the derivative of w w.r.t. time index t, denoted as 9wptq, while on the right
hand side ∇L is the gradient of the training loss w.r.t. the weight parameter (not w.r.t. the
time).

3 Implicit Bias/Regularization

We want to analyze the implicit property of the training when we use gradient descent to
optimize some objective function. It is called implicit bias or implicit regularization. In this
lecture, we will focus on linear regression and logistic regression first.

3.1 Linear Regression

Let S “ tpxi, yiquni“1 is the training set. X “ rx1, . . . ,xnsJ P Rnˆd, y “ py1, . . . , ynqJ P Rn,
where n ă d which is overparameterized setting and X is full rank i.e., there are an infinite
number of optimal solutions. Each row of X is a data point.

Lpwq “
1

n

n
ÿ

i“1

1

2
pxxi,wy ´ yiq

2
“

1

2n
}Xw ´ y}

2
2.

Here we use square loss which is convex. Due to convexity, if we have small enough learning
rate, we can guarantee convergence to global minimum by convex optimization for linear
regression.

We use gradient descent to solve the above linear regression problem. Without loss of
generality, we initialize w0 P Rd to the 0 vector, and thereby the update rule is,

wt`1 “ wt ´ ηt∇Lpwtq “ wt`1 “ wt ´
ηt
n
XJ

pXwt ´ yq.

We can see that XJpXwt ´ yq is a linear combination of the data points in Rd. We denote
it as XJpXwt ´ yq P lintxiu

n
i“1. Thus, we have the following lemma.

Lemma 1. The iterates of GD lie in the span of data points, i.e., wt P lintxiu
n
i“1 for

t “ 0, 1, 2, . . .

Proof. Can be easily proved with mathematical induction.

So we can see that the GD converges to some solution in the linear span of the training
data. Now let’s consider the structure of the solutions in this linear span.

Lemma 2. There is a unique solution in lintxiu
n
i“1 to the linear regression problem.
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Proof. It is easy to see the existence, e.g., X:y is such a solution where X: is the pseudo-
inverse of X.

The uniqueness can be proved by contradiction. Suppose w˚
1 “ XJα1 and w˚

2 “ XJα2

are both in lintxiu
n
i“1 and solutions to the linear regression problem. Because n ă d, we have

zero training loss, y “ Xw˚
1 “ Xw˚

2 . Thus,

0 “ Xpw˚
1 ´ w˚

2q “ XXJ
pα1 ´ α2q.

Because XXJ P Rnˆn is full rank, α1 “ α2.

This unique solution can be further characterized.

Lemma 3. The minimum norm solution is in lintxiu
n
i“1. If ŵ “ argminw

1
2
}w}2 s.t. Xw “

y, then ŵ P lintxiu
n
i“1.

Proof. We decompose ŵ into the space of lintxiu
n
i“1, and the complement space of it. Namely,

ŵ “ ŵ1 ` ŵK, where ŵ1 P lintxiu
n
i“1, ŵK R lintxiu

n
i“1. Note that,

}ŵ}
2
2 “ }ŵ1}

2
2 ` }ŵK}

2
2 ě }ŵ1}

2
2.

Note that XŵK “ 0, ŵ1 satisfies,

Xŵ1 “ Xpŵ ´ ŵKq “ Xŵ “ 0,

However, we know that ŵ is the minimum norm solution, so we must have,

ŵ “ ŵ1 P lintxiu
n
i“1.

This completes the proof.

Thus, we can conclude that gradient descent with w0 “ 0 converges to the minimum
norm solution to the linear regression problem.

3.2 Logistic Regression

Let S “ tpxi, yiquni“1 is the training set. X “ rx1, . . . ,xnsJ P Rnˆd, y “ py1, . . . , ynqJ P Rn,
where n ă d which is overparameterized setting and X is full rank. Let us consider the 0-1
loss and exponential loss in a binary classification problem with y P t`1,´1u.

L0-1pwq “
1

n

n
ÿ

i“1

ItsignpwJxiq ‰ yiu “
1

n

n
ÿ

i“1

It´yiw
Jxi ě 0u

Lexppwq “
1

n

n
ÿ

i“1

expp´yiw
Jxiq.

Let ŷi “ wJxi denote the output of the model. Normally, when ŷi ą 0 the predicted label
is `1 and when ŷi ă 0 the predicted label is ´1.

The 0-1 loss function is non-convex and non-differentiable (as the blue line shows in Figure
1). Thus it is computationally difficult (NP hard) to directly minimize this 0-1 training loss.

3



Figure 1: 0-1 loss and exponential loss.

In practice we usually use a surrogate loss, such as an exponential loss, logistic loss or hinge
loss, which are upper bounds of the 0-1 loss. We use the exponential loss here (the orange
line in Figure 1), and consider gradient flow with exponential loss:

9wptq “
dwptq

dt
“ ´∇Lpwptqq.

We will assume that perfect classification exists.

Assumption 4. Assume the training data is linear separable: there exists w, such that
@i P rns, yiw

Jxi ě 1.

One observation is that for exponential loss the optimal w is infinite far away. Thus, we
are interested in the direction of w.

Definition 5 (Convergence in direction). If for some ŵ,

lim
tÑ8

wptq

}wptq}2
“

ŵ

}ŵ}2
,

we say that the direction of wptq will converge to the the direction of ŵ as t Ñ 8.

Definition 6 (Maximum margin solution). ŵ is the maximum margin solution if

ŵ “ argmin
w

1

2
}w}

2

s.t. @i P rns, yiw
Jxi ě 1.

Note that in the above definition the margin will be 1
}w}

, so minimum norm leads to
maximum margin.

For simplicity, let

zi “ yixi.
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By KKT condition on the maximum margin solution, we have

Lpw, αq “
1

2
}w}

2
2 `

n
ÿ

i“1

αir1 ´ wJzis

0 “
BLpw, αq

Bw
“ w `

n
ÿ

i“1

αir´zis

ŵ “

n
ÿ

i“1

αizi,

where αi is a Lagrangian multiplier. Furthermore, by complementary slackness,

#

@i P Sc, ŵJzi ą 1, αi “ 0

@i P S, ŵJzi “ 1, αi ě 0,
(1)

where S “ ti P rns : ŵJzi “ 1u denotes the support vectors. For simplicity of the analysis,
we will assume the following mild technical assumption:

Assumption 7. Assume that for any i P S, αi ą 0.

We have the following theorem.

Theorem 8. We consider the overparameterized setting with linearly separable training
data pX,yq satisfying Assumptions 4 and 7. For exponential loss and and any initialization
wp0q, gradient flow with infinitesimal step satisfieswptq converge to the direction of ŵ, where
ŵ is the maximum margin solution.

Proof. We are going to show that

wptq “ ŵ log t ` ϕptq,

where ŵ is the maximum margin classifier, and ϕptq P Rd is some residual. ŵ log t will
dominate (much larger than ϕptq).

Define

rptq “ wptq ´ ŵ log t ´ w̃, (2)

where w̃ is a vector satisfying,

@i P S, αi ą 0 we have w̃ s.t. expp´w̃Jziq “ αi.

Note that overparameterization guarantees its existence.
Then by Assumption 7,

ŵ “

n
ÿ

i“1

αizi “
ÿ

αi‰0

αizi “
ÿ

iPS

expp´w̃Jziqzi.

5



We consider }rptq}22. By ODE we have,

1

2

d}rptq}2

dt
“ rptq ¨ 9rptq (3)

“

ˆ

´∇Lpwptqq ´
1

t
ŵ

˙J

rptq (4)

“

n
ÿ

i“1

expp´zJ
i wptqqzJ

i rptq ´
1

t
ŵJrptq (5)

“
ÿ

iPS

expp´zJ
i wptqqzJ

i rptq ´
1

t
ŵJrptq `

ÿ

iRS

expp´zJ
i wptqqzJ

i rptq. (6)

By (2), we have wptq “ ŵ log t` w̃ ` rptq. By (1), we have zJ
i ŵ “ 1 for i P S. We will show

that the first two terms ď 0,

ÿ

iPS

expp´zJ
i wptqqzJ

i rptq ´
1

t
ŵJrptq

“
ÿ

iPS

expp´zJ
i ŵ log t ´ zJ

i w̃ ´ zJ
i rptqqzJ

i rptq ´
1

t
ŵJrptq

“
ÿ

iPS

expp´ log t ´ zJ
i w̃ ´ zJ

i rptqqzJ
i rptq ´

1

t

ÿ

iPS

expp´zJ
i w̃qzJ

i rptq

“
1

t

ÿ

iPS

expp´zJ
i w̃qrexpp´zJ

i rptqq ´ 1szJ
i rptq

ď0

The last inequality comes from pexpp´rq ´ 1qr ď 0. Next lecture, we will handle the third
term in (6) and continue to finish the proof.
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