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1 Overview

In this lecture, we will finish the proof of using gradient flow on logistic regression with
exponential loss under overparameterized setting, which is defined in the last lecture. We
will also introduce a new proof of implicit bias by replacing the gradient flow to the gradient
descent.

2 Logistic Regression with Gradient Flow

Let S “ tpxi, yiquni“1 be a training set. X “ rx1, . . . ,xnsJ P Rnˆd, y “ py1, . . . , ynqJ P Rn,
where n ă d which is overparameterized setting and X is full rank. Let zi “ yixi and
ŷi “ wJxi (the output of the model) be the score of classification. Normally, when ŷi ą 0
the predicted label is `1 and when ŷi ă 0 the predicted label is ´1.

Let us consider exponential loss in a binary classification problem with y P t`1,´1u

Lexppwq “
1

n

n
ÿ

i“1

expp´yiw
Jxiq.

and consider gradient flow with exponential loss

9wptq “
dwptq

dt
“ ´∇Lpwptqq.

We will assume that perfect classification exists.

Assumption 1. Assume the training data is linear separable: there exists w, such that
@i P rns, yiw

Jxi ě 1.

One observation is that for exponential loss the optimal w is infinite far away. Thus, we
are interested in the direction of w.

Definition 2 (Convergence in direction). If for some ŵ,

lim
tÑ8

wptq

}wptq}2
“

ŵ

}ŵ}2
,

we say that the direction of wptq will converge to the the direction of ŵ as t Ñ 8.

Definition 3 (Maximum margin solution). ŵ is the maximum margin solution if

ŵ “ argmin
w

1

2
}w}

2

s.t. @i P rns, yiw
Jxi ě 1.
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Note that in the above definition the margin will be 1
}w}

, so minimum norm leads to
maximum margin.

For simplicity, let

zi “ yixi.

By KKT condition on the maximum margin solution, we have

Lpw, αq “
1

2
}w}

2
2 `

n
ÿ

i“1

αir1 ´ wJzis

0 “
BLpw, αq

Bw
“ w `

n
ÿ

i“1

αir´zis

ŵ “

n
ÿ

i“1

αizi,

where αi is a Lagrangian multiplier. Furthermore, by complementary slackness,

#

@i P Sc, ŵJzi ą 1, αi “ 0

@i P S, ŵJzi “ 1, αi ě 0,
(1)

where S “ ti P rns : ŵJzi “ 1u denotes the support vectors. For simplicity of the analysis,
we will assume the following mild technical assumption:

Assumption 4. Assume that for any i P S, αi ą 0.

Theorem 5. We consider the overparameterized setting with linearly separable training
data pX,yq satisfying Assumptions 1 and 4. For exponential loss and and any initialization
wp0q, gradient flow with infinitesimal step satisfieswptq converge to the direction of ŵ, where
ŵ is the maximum margin solution.

Proof. The intuition is that we would like to show that

wptq “ ŵsptq ` opsptqq,

where ŵ is the maximum margin classifier, and ŵsptq will dominate (much larger than
opsptqq). If above equation is true, then we can get direction convergence. In later calculation,
we will find that sptq “ log t and opsptqq related to w̃ which we defined before. This is the
intuition about the definition of w̃ and the equation below.

wptq “ ŵ log t ` w̃ ` rptq, (2)

where we need to prove }rptq}22 “ oplog tq. By fundamental theorem of calculus,

}rpt2q}
2
2 “ }rpt1q}

2
2 `

ż t2

t1

d}rptq}22

dt
dt.
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We only need to prove
d}rptq}22

dt
ă 1

t
. By ODE, in the last lecture, we showed,

1

2

d}rptq}2

dt
“ rptq ¨ 9rptq (3)

“
ÿ

iPS

expp´zJ
i wptqqzJ

i rptq ´
1

t
ŵJrptq `

ÿ

iRS

expp´zJ
i wptqqzJ

i rptq. (4)

By (1) and (2), we showed that the first two terms ď 0 in the last lecture,

ÿ

iPS

expp´zJ
i wptqqzJ

i rptq ´
1

t
ŵJrptq ď 0.

Now, we will prove the third term in (4) ă 1
t
. Let θ “ miniRS z

J
i ŵ, we have θ ą 1 by the

definition of Sc in (1).
ÿ

iRS

expp´zJ
i wptqqzJ

i rptq “
ÿ

iRS

expp´ zJ
i ŵ

loomoon

ěθą1

log t ´ zJ
i w̃ ´ zJ

i rptqqzJ
i rptq

ď
1

tθ

ÿ

iRS

expp´zJ
i w̃q

looooooomooooooon

ďC

expp´zJ
i rptqqzJ

i rptq
looooooooooomooooooooooon

ď1

ď
C

tθ
,

where C is a constant that does not depend on t. Thus, we have

}rpt2q}
2
2 ď }rpt1q}

2
2 ` 2

ż t2

t1

C

tθ
dt ă C 1.

This shows that }rptq}22 is bounded, and thus the residual rptq is bounded. We finished the
proof.

3 Logistic Regression with Gradient Descent

We want to use gradient descent to minimize this Lpwq “ Lexppwq. In each iteration, our
update rule is:

wt`1 “ wt `
ηt
n

n
ÿ

i“1

expp´yiw
Jxiqyixi.

We will prove the following theorem.

Theorem 6. Let txi, yiu
n
i“1 be any linearly separable dataset. Let lpŷ, yq “ expp´ŷyq be

the exponential loss. Suppose }xi}2 ď 1, the step size is bounded ηt ď mintη`,
1

Lpwtq
u where

0 ă η` ă `8, and we use an arbitrary initialization w0, then the iterate wt of gradient
decent satisfies,

lim
tÑ8

min
iPrns

yiw
J
t xi

}wt}
2
2

“ max
}w}“1

min
iPrns

yiw
Jxi :“ γ.

3



Here, miniPrns
yiw

J
t xi

}wt}22
represents the margin of classifier wt, and the right most term is

the maximum margin. The high level idea we have the theorem is that we can do convex
optimization on the margin based loss.

We first lay down some lemmas that will be useful in our proof.

Lemma 7. For any w, we have }Lpwq} ě γLpwq.

Above Lemma is also called the PL condition, which guarantees there is no bad local
minimum in the loss landscape.

Lemma 8. The following properties of Lpwtq and ∇Lpwtq hold:

(A)
ř8

t“0 ηt}∇Lpwtq}22 ă 8.

(B) wt converges to a global minimum i.e., Lpwtq Ñ 0 and hence ,wJ
t zi Ñ 8 for any i.

(C)
ř8

t“0 ηt}∇Lpwtq} “ 8

Lemma 9. If ηt ď
?
2

Lpwtq
, we have Lpwt`1q ď Lpwtq.

We will prove above lemmas in the homework. Now, we are ready to prove the main
theorem.

Proof. By Taylor expansion, we have,

Lpwt`1q “Lpwtq ` x∇Lpwtq,wt`1 ´ wty

`
1

2
sup

βPp0,1q

pwt`1 ´ wtq
J∇2Lpwt ` βpwt`1 ´ wtqqpwt`1 ´ wtq

ďLpwtq ´ ηt}∇Lpwtq}
2
2 `

η2t
2

sup
βPp0,1q

Lpwt ´ βηt∇Lpwtqq

looooooooooooooomooooooooooooooon

ďLpwtq by Lemma 9

}∇Lpwtq}
2
2

ďLpwtq ´ ηt}∇Lpwtq}
2
2 `

η2t
2
Lpwtq}∇Lpwtq}

2
2,

where the first inequality is from wt`1 “ wt ´ ηt∇Lpwtq and Hessian matrix calculated by
loss function. We will continue the proof in the next lecture.
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