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1 NTK on Two-layer Neural Networks with ReLU

Consider regression setting with dataset (x;, y;)",,7; € R y; € R and ||z = 1, |y < 1.
The squared loss is defined to be:
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Define prediction vector u = [f(x1;w), ..., f(2,;w)]T € R™ and for gradient flow, we assume

chain rule holds here:
dw(t)

dt
Consider two-layer neural networks with ReLLU activation
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where o(z) = max{0,z}. Initialize the weights by a;(0) ~ uniform{—1,1} and w;(0) ~
N(0, 1), and the training updates only w;’s.

For weights w, let
<3f(l’i;w) Of(xj; w)>
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Let H(t) be a shorthand for H(w(t)) and let H* = Eq,o)[H (0)].
Theorem 1. Assume \g = Apin(H*) > 0. If m = Q(/\455) then with probability > 1 — 0,
lu(t) = yl3 < exp (=Aot)[|u(0) — ylI5.

The proof of the theorem is based on the following lemma on the dynamics of wu:

Lemma 2. dut)
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Proof. This lemma was proved in the previous lecture. O

To apply the above lemma, we need to lower bound H(t). We first show that H(0) ~ H*.

Lemma 3. Assume |z;]] < 1 and o(z) = max{0,z}. If the number of hidden neuron
m > Q(e*n*log(%)), then with probability at least 1 — § over the random initialization,

IH(0) — H*[|2 < e
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Proof. This lemma was proved in the previous lecture. O

We then show that if the weight w(t) is near w(0), then H(t) ~ H(0).
Lemma 4. With probability > 1 — ¢ over w(0), for any {wy}}*, satisfying
2 < V2T
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we have |[H — H(0)||> < 22 and thus Ay (H) > 22

Proof. Define event Ay, = {Jwy, |Jwr, — wi(0)|| < R, 1[z, wi(0) > 0] # 1z, wy > 0]}.
We first bound the probability of A;:

||wi, — wi(0) = R,Vk € [m],

2R
Pr(A;) < Pr xjw <R) < —, 4
where the first inequality comes from the fact that |z, wy,—x] wi(0)| < ||lz]|[Jwr—wx(0)|| < R,
and the second from the anti-concentration of Gaussians.
Applying the above inequality we can bound individual entry as following:
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With the bound for the individual entry, we can further bound the difference between two
matrices as following:

E[||H — H(0)|]2] < E[|H — H(0)] ] (10)
<E|)|Hy(0) - Hz’j|] (11)
< 4n*R (12)
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Thus, according to Markov’s inequality, we know that Pr[|H — H(0)|]» > %] < %%f =4
and the proof is done. n



Lemma 5. Suppose for 0 < s <t, Ayim(H(s)) > 22, then we have following result:
L flu(t) = yl3 < exp (=Aoy)l|u(0) — yll3.

2. |lw(t) = wi(0)[l2 < sv/nllu(0) = yll2/(Aov/m) = R

Proof. For the first result:

A= — o1y — gy 00 )
= —2(u(t) — ) TH(0)(u(t) — ) (16)
< ~2ult) ~ 4133 a7

—Xollu(t) = yll3. (18)

This means we can further obtain the result from Gronwall’s inequality (see e.g., wiki link):

lu(t) = yll3 < exp (Aot) u(0) — ylf3.

For the second result, define w(s) = =V L(w(s)):

Jue(t) = w0l = 1| [ n(s)as] (19)
< / () ds. (20)
Jeie(s ||—||Z ziw(s)) — 1) V%akl[wkw)%eomnz (21)
< \/—mzl |f(zi;w(s)) — v (22)
< \%ﬁd if;wi(s) e (23)
< @ exp (—Aos/2)][u(0) — gl (24)
Plug (24) into (20) we have:
nt) — w0l < \f () ol [ exp(—%s/?)ds (25)
_ Jue(®) — we @)l (26)
<\ EO) ~ vl = R, @)
]


https://en.wikipedia.org/wiki/Gr%C3%B6nwall%27s_inequality

With all the lemmas, to prove Theorem 1, it is sufficient to ensure that R’ < R, which
requires
5 0) — 2
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One can show that E[u(0)—y||3 = O(n), and then by Markov’s inequality, [|u(0)—y||3 < O(%)
with probability > 1 — §. The proof of Theorem 1 is then completed.
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