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1 NTK on Two-layer Neural Networks with ReLU

Consider regression setting with dataset (xi, yi)
n
i=1, xi ∈ Rd, yi ∈ R and ∥xi∥ = 1, |yi| ≤ 1.

The squared loss is defined to be:

L(w) =
1

2

n∑
i=1

(yi − f(xi;w))
2 (1)

Define prediction vector u = [f(x1;w), ..., f(xn;w)]
⊤ ∈ Rn and for gradient flow, we assume

chain rule holds here:
dw(t)

dt
= −∇L(w) (2)

Consider two-layer neural networks with ReLU activation

f(x;w) =
1√
m

m∑
i=1

aiσ(⟨wi, x⟩),

where σ(z) = max{0, z}. Initialize the weights by ai(0) ∼ uniform{−1, 1} and wi(0) ∼
N(0, Id), and the training updates only wi’s.

For weights w, let

Hij =

〈
∂f(xi;w)

∂w
,
∂f(xj;w)

∂w

〉
.

Let H(t) be a shorthand for H(w(t)) and let H∗ = Ew(0)[H(0)].

Theorem 1. Assume λ0 = λmin(H
∗) > 0. If m = Ω( n6

λ4δ3
), then with probability ≥ 1− δ,

∥u(t)− y∥22 ≤ exp (−λ0t)∥u(0)− y∥22.

The proof of the theorem is based on the following lemma on the dynamics of u:

Lemma 2.
du(t)

dt
= −H(t)[u(t)− y] (3)

Proof. This lemma was proved in the previous lecture.

To apply the above lemma, we need to lower bound H(t). We first show that H(0) ≈ H∗.

Lemma 3. Assume ∥xi∥ ≤ 1 and σ(z) = max{0, z}. If the number of hidden neuron
m ≥ Ω(ϵ−2n2 log(n

δ
)), then with probability at least 1− δ over the random initialization,

∥H(0)−H∗∥2 ≤ ϵ.
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Proof. This lemma was proved in the previous lecture.

We then show that if the weight w(t) is near w(0), then H(t) ≈ H(0).

Lemma 4. With probability ≥ 1− δ over w(0), for any {wk}mk=1 satisfying

∥wk − wk(0)∥2 ≤
√
2πδλ0

16n2
:= R, ∀k ∈ [m],

we have ∥H −H(0)∥2 ≤ λ0

4
and thus λmin(H) ≥ λ0

2
.

Proof. Define event Aik = {∃wk, ∥wk − wk(0)∥ ≤ R,1[x⊤
i wk(0) ≥ 0] ̸= 1[x⊤

i wk ≥ 0]}.
We first bound the probability of Aik:

Pr(Aik) ≤ Pr(|x⊤
i wk(0)| ≤ R) ≤ 2R√

2π
, (4)

where the first inequality comes from the fact that |x⊤
i wk−x⊤

i wk(0)| ≤ ∥xi∥∥wk−wk(0)∥ ≤ R,
and the second from the anti-concentration of Gaussians.

Applying the above inequality we can bound individual entry as following:

E[|Hij(0)−Hij|] ≤ E
[∣∣∣∣ 1mx⊤

i xj

m∑
k=1

(
1[x⊤

i wk(0) ≥ 0]1[x⊤
j wk(0) ≥ 0] (5)

− 1[x⊤
i wk ≥ 0]1[x⊤

j wk ≥ 0]

)∣∣∣∣] (6)

≤ 1

m

m∑
i=1

E[1[Aik ∪ Ajk]] (7)

≤ 1

m

m∑
k=1

[Pr(Aik) + Pr(Ajk)] (8)

≤ 4R√
2π

. (9)

With the bound for the individual entry, we can further bound the difference between two
matrices as following:

E[∥H −H(0)∥2] ≤ E[∥H −H(0)∥F ] (10)

≤ E

[∑
ij

|Hij(0)−Hij|

]
(11)

≤ 4n2R√
2π

(12)

≤ 4n2

√
2π

√
2πδλ0

16n2
(13)

=
δλ0

4
. (14)

Thus, according to Markov’s inequality, we know that Pr[∥H − H(0)∥2 ≥ λ0

4
] ≤ δλ0/4

λ0/4
= δ

and the proof is done.
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Lemma 5. Suppose for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0

2
, then we have following result:

1. ∥u(t)− y∥22 ≤ exp (−λ0y)∥u(0)− y∥22.

2. ∥wk(t)− wk(0)∥2 ≤ s
√
n∥u(0)− y∥2/(λ0

√
m) := R′.

Proof. For the first result:

d∥u(t)− y∥22
dt

= 2(u(t)− y)⊤
du(t)

dt
(15)

= −2(u(t)− y)⊤H(t)(u(t)− y) (16)

≤ −2∥u(t)− y∥22
λ0

2
(17)

≤ −λ0∥u(t)− y∥22. (18)

This means we can further obtain the result from Grönwall’s inequality (see e.g., wiki link):

∥u(t)− y∥22 ≤ exp (λ0t)∥u(0)− y∥22.

For the second result, define ẇ(s) := −∇L(w(s)):

∥wk(t)− wk(0)∥2 = ∥
∫ t

0

ẇk(s)ds∥2 (19)

≤
∫ t

0

∥ẇk(s)∥2ds. (20)

∥ẇk(s)∥ = ∥
n∑

i=1

(f(xi;w(s))− yi)
1√
m
ak1[wk(s)

⊤xi ≥ 0]xi∥2 (21)

≤ 1√
m

n∑
i=1

|f(xi;w(s))− yi| (22)

≤ 1√
m

√
n

√√√√ n∑
i=1

(ui(s)− yi)2 (23)

≤
√

n

m
exp (−λ0s/2)∥u(0)− y∥2. (24)

Plug (24) into (20) we have:

∥wk(t)− wk(0)∥2 ≤
√

n

m
∥u(0)− y∥2

∫ t

0

exp (−λ0s/2)ds (25)

= ∥wk(t)− wk(0)∥2 (26)

≤
√

n

m
∥u(0)− y∥2

2

λ0

:= R′. (27)
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https://en.wikipedia.org/wiki/Gr%C3%B6nwall%27s_inequality


With all the lemmas, to prove Theorem 1, it is sufficient to ensure that R′ ≤ R, which
requires

m = Ω

(
n5∥u(0)− y∥22

λ4
0δ

2

)
.

One can show that E∥u(0)−y∥22 = O(n), and then by Markov’s inequality, ∥u(0)−y∥22 ≤ O(n
δ
)

with probability ≥ 1− δ. The proof of Theorem 1 is then completed.
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