1 Continuous Setting

Consider the traditional classification task: given input-out data $\left(x_{i}, y_{i}\right)_{i=1}^{n}, x \in \mathbb{R}^{d}, y \in$ $\{1,-1\}$. The goal is to find a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, such that:

$$
\left.\min _{f} Q(f)=L(f)+R(f), L(f)=E_{x, y}[l(f(x)), y)\right]
$$

where $l(\cdot)$ is defined to be the loss function and R is a regularization function. Similar to Kernel methods, consider the two-level network given below to represent f :

$$
\begin{equation*}
f(\omega, \rho, x)=\int_{\mathbb{R}^{d}} \sigma(\theta, x) \omega(\theta) \rho(\theta) d \theta \tag{1}
\end{equation*}
$$

where $\sigma(\theta, x): \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a known real-valued function, $\omega(\theta): \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a real value function of θ, and $\rho(\theta)$ is a probability density over θ. For regularizer, we use

$$
R(\omega, \rho)=\lambda_{1} R_{1}(\omega, \rho)+\lambda_{2} R_{2}(\rho)
$$

, where

$$
\begin{aligned}
R_{1}(\omega, \rho) & =\int r_{1}(\omega(\theta)) \rho(\theta) d \theta, r_{1}(\omega)=|\omega|^{2} \\
R_{2}(\rho) & =\int r_{2}(\theta) \rho(\theta) d \theta, r_{2}(\theta)=\|\theta\|^{2}
\end{aligned}
$$

Next we show a discrete NN approximates the continuous one when hidden nodes go to infinity and then drive the evolution rule of $\rho(\theta)$ and $\omega(\theta)$ from the (noisy) GD algorithm when the step size becomes small.

2 Discrete Setting

Consider a finite NN with the following form to approximate $f(\omega, \rho, x)$:

$$
\begin{equation*}
\widehat{f}(\mu, \theta, x)=\frac{1}{m} \sum_{j=1}^{m} \mu^{j} \sigma\left(\theta_{t}^{j}, x\right) \tag{2}
\end{equation*}
$$

with the regularization term:

$$
\begin{equation*}
\widehat{R}_{1}(\mu, \theta)=\frac{1}{m} \sum_{j=1}^{m} r_{1}\left(\mu^{j}\right), \widehat{R}_{2}(\theta)=\frac{1}{m} \sum_{j=1}^{m} r_{2}\left(\theta^{j}\right), \tag{3}
\end{equation*}
$$

Consider trainwith objective denoted as,

$$
\begin{equation*}
\widehat{Q}(u, \theta)=\mathbb{E}_{x, y} l(\widehat{f}(u, \theta, x), y)+\lambda_{1} \widehat{R}_{1}(u, \theta)+\lambda_{2} \widehat{R}_{2}(\theta) \tag{4}
\end{equation*}
$$

We can solve it through the standard (noisy) GD, the algorithm is given by:
Step 0. Initialize $\left(\mu_{0}, \theta_{0} \sim P_{0}(\mu, \theta)\right)$
Step 1. Update θ_{j} by

$$
\theta_{t+1}^{j}=\theta_{t}^{j}-\Delta t \nabla_{\theta^{j}}\left[\widehat{Q}\left(u_{t}, \theta_{t}\right)\right]-\sqrt{\lambda_{3}} \xi_{t+1}^{j},
$$

where Δt is the step size and $\xi_{t+1}^{j} \sim N\left(0, \sqrt{2 \Delta t} I_{d}\right)$.
Step 2. Update μ_{j} by

$$
u_{t+1}^{j}=u_{t}^{j}-\Delta t \nabla_{u^{j}}\left[\widehat{Q}\left(u_{t}, \theta_{t}\right)\right]-\sqrt{\lambda_{3}} \zeta_{t+1}^{j},
$$

where $\zeta_{t+1}^{j} \sim N(0, \sqrt{2 \Delta t})$.

2.1 Plain GD

We first consider the unnoisy setting where $\lambda_{3}=0$. We have the following Lemma.

Lemma 1. Suppose at time $t \geq 0$, we have $\theta_{t}^{j} \sim \rho_{t}$, and let $u_{j}^{t}=\omega_{t}\left(\theta_{t}^{j}\right)$. Assume l^{\prime} is continuous and σ is twice differentiable. For all x, we have:

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \widehat{f}\left(u_{t}, \theta_{t}, x\right)=f\left(\omega_{t}, \rho_{t}, x\right) \tag{5}
\end{equation*}
$$

Furthermore, when $\Delta t \rightarrow 0, m \rightarrow \infty$, we can derive,

$$
\begin{aligned}
& \frac{d \rho_{t}(\theta)}{d t}=-\nabla_{\theta} \cdot\left[\rho_{t}(\theta) g_{2}\left(t, \theta, \omega_{t}(\theta)\right)\right] \\
& \frac{d \omega_{t}(\theta)}{d t}=g_{1}\left(t, \theta, \omega_{t}(\theta)\right)-\nabla_{\theta}\left[\omega_{t}(\theta)\right] \cdot g_{2}\left(t, \theta, \omega_{t}(\theta)\right),
\end{aligned}
$$

where ∇_{θ} means the divergence, g_{1} and g_{2} satisfy:

$$
\begin{aligned}
g_{1}(t, \theta, u) & =-\mathbb{E}_{x, y}\left[l^{\prime}\left(f\left(\omega_{t}, \rho_{t}, x\right), y\right) \sigma(\theta, x)\right]-\lambda_{1} \nabla_{u}\left[r_{1}(u)\right] \\
g_{2}(t, \theta, u) & =-\mathbb{E}_{x, y}\left[l^{\prime}\left(f\left(\omega_{t}, \rho_{t}, x\right), y\right) u \nabla_{\theta} \sigma(\theta, x)\right]-\lambda_{2} \nabla_{\theta}\left[r_{2}(\theta)\right]
\end{aligned}
$$

To prove the lemma, we utilize the tool with Fokker-Planck Equation to compute the evolution.

Background with Fokker-Planck Equation Suppose the movement of a particle in m dimensional space can be characterized by the stochastic differential equation given below:

$$
d x_{t}=g\left(x_{t}, t\right) d_{t}+\sqrt{2 \beta^{-1}} \Sigma d_{B_{t}}
$$

Let $x_{t} \sim p(x, t)$, the evolution of $p(x, t)$ is given by:

$$
\frac{\partial p(x, t)}{\partial t}=\frac{\Sigma \Sigma^{\top}}{\beta} \nabla^{2} p(x, t)-\nabla \cdot\left[p(x, t) g\left(x_{t}, t\right)\right]
$$

Proof of Lemma 1. Let the $p_{t}(\theta, \mu)$ as the joint distribution for (θ, μ) :

$$
\left(\theta_{t}^{j}, u_{t}^{j}\right) \sim p_{t}(\theta, u)=\rho_{t} \delta\left(u=\omega_{t}(\theta)\right)
$$

We can rewrite $f\left(\omega_{t}, \rho_{t}, x\right)$ as:

$$
f\left(\omega_{t}, \rho_{t}, x\right)=\int_{\mathbb{R}^{d+1}} \sigma(\theta, x) p_{t}(\theta, u) d \theta d u
$$

By the Law of the Large number, when $m \rightarrow \infty$,

$$
\widehat{f}\left(u_{t}, \theta_{t}, x\right) \rightarrow f\left(\omega_{t}, \rho_{t}, x\right)
$$

Now we denote

$$
\widehat{g}_{2}(t, \theta, u)=-\mathbb{E}_{x, y}\left[l^{\prime}\left(\widehat{f}\left(u_{t}, \theta_{t}, x\right), y\right) u \nabla_{\theta} \sigma(\theta, x)\right]-\lambda_{2} \nabla_{\theta}\left[r_{2}(\theta)\right]
$$

From the update rule of GD, we have $\theta_{t+1}^{j}=\theta_{t}^{j}+\Delta t \widehat{g}_{2}\left(t, \theta_{t}^{j}, u_{t}^{j}\right)$. Let $\Delta t \rightarrow 0$, using $u_{t}^{j}=\omega_{t}\left(\theta_{t}^{j}\right)$, we have

$$
\frac{d \theta_{t}^{j}}{d t}=\widehat{g}_{2}\left(t, \theta_{t}^{j}, \omega_{t}\left(\theta_{t}^{j}\right)\right)
$$

By applying Fokker-Planck equation,

$$
\frac{d \rho_{t}(\theta)}{d t}=-\nabla_{\theta} \cdot\left[\rho_{t}(\theta) \widehat{g}_{2}\left(t, \theta, \omega_{t}(\theta)\right)\right]
$$

As $m \rightarrow \infty$, and because l^{\prime} is continuous, $\sigma(\theta, x)$ and ρ_{t} are also second-order smooth, we obtain:

$$
\nabla_{\theta} \cdot\left[\rho_{t}(\theta) \widehat{g}_{2}\left(t, \theta, \omega_{t}(\theta)\right)\right]-\nabla_{\theta} \cdot\left[\rho_{t}(\theta) g_{2}\left(t, \theta, \omega_{t}(\theta)\right)\right] \xrightarrow{\text { a.s. }} 0
$$

To prove the evolution form for $\omega_{t}(\theta)$, we let:

$$
\widehat{g}_{1}(t, \theta, u)=-\mathbb{E}_{x, y}\left[l^{\prime}\left(\widehat{f}\left(u_{t}, \theta_{t}, x\right), y\right) \sigma(\theta, x)\right]-\lambda_{1} \nabla_{u} r_{1}(u)
$$

On one side,

$$
\begin{aligned}
& \omega_{t+\Delta t}\left(\theta_{t+\Delta t}\right) \\
= & \omega_{t+\Delta t}\left(\theta_{t}+\widehat{g}_{2}\left(t, \theta_{t}, \omega_{t}(\theta)\right) \Delta t+o(\Delta t)\right) \\
= & \omega_{t}\left(\theta_{t}+\widehat{g}_{2}\left(t, \theta_{t}, \omega_{t}(\theta)\right) \Delta t+o(\Delta t)\right)+\frac{d \omega_{t}\left(\theta_{t}+\widehat{g}_{2}\left(t, \theta_{t}, \omega_{t}(\theta)\right) \Delta t+o(\Delta t)\right)}{d t} \Delta t \\
= & \omega_{t}\left(\theta_{t}\right)+\left[\nabla_{\theta} \omega_{t}(\theta)\right] \cdot \widehat{g}_{2}\left(t, \theta_{t}, \omega_{t}(\theta)\right) \Delta t+o(\Delta t)+\frac{d \omega_{t}\left(\theta_{t}+\widehat{g}_{2}\left(t, \theta, \omega_{t}(\theta)\right) \Delta t+o(\Delta t)\right)}{d t} \Delta t .
\end{aligned}
$$

By the update rule $\omega_{t+\Delta t}\left(\theta_{t+\Delta t}\right)=\omega_{t}\left(\theta_{t}\right)+\widehat{g}_{1}\left(t, \theta_{t}, \omega_{t}(\theta)\right) \Delta t$, we have:
$\frac{d \omega_{t}\left(\theta_{t}+\widehat{g}_{2}\left(t, \theta_{t}, \omega_{t}(\theta)\right) \Delta t+o(\Delta t)\right)}{d t}=-\left[\nabla_{\theta}\left(\omega_{t}(\theta)\right)\right] \cdot \widehat{g}_{2}\left(t, \theta_{t}, \omega_{t}(\theta)\right)+\widehat{g}_{1}\left(t, \theta_{t}, \omega_{t}(\theta)\right)+o(1)$
The proof is finished by Let $\Delta t \rightarrow 0$, and let $m \rightarrow \infty$.

