CS 839: Theoretical Foundations of Deep Learning	Spring 2022	
Lecture 16 Mean Field Analysis of Neural Networks III		
Instructor: Yingyu Liang	Date: March $24^{\text {th }}, 2022$	Scriber: Haotian Shi

1 Assumptions

This section presents several assumptions needed for theoretical analysis.
Assumption 1:(activation function)
Assume that $\sigma(\theta, x)$ satisfies the following condition:

$$
\forall \theta, \mathbb{E}_{x}\left[\sigma(\theta, x)^{2}\right] \leq B_{r}^{2}
$$

Assumption 2:(properties of the loss function). We assume:

1. $l(\widehat{y}, y)$ is convex on \widehat{y}.
2. $l(\widehat{y}, y)$ is bounded below, i.e., $l(\widehat{y}, y) \geq B_{l}$.
3. $l(\widehat{y}, y)$ is $L_{1}-$ Lipschitz and has L_{2}-Lipschitz continous gradient. i.e., $\left|l^{\prime}(\widehat{y}, y)\right| \leq L_{1} ;\left|l^{\prime}\left(\widehat{y}_{1}, y\right)-l^{\prime}\left(\widehat{y}_{2}, y\right)\right| \leq L_{2}\left|\widehat{y}_{1}-\widehat{y}_{2}\right|$.

Assumption 3:(properties of the feature activation function h^{\prime}). Under Assumption 1, we further assume:

1. for all $x, \sigma(\theta, x)$ is second-order differentiable on θ.
2. for all x and θ, we assume $|\sigma(\theta, x)| \leq C_{1}\|\theta\|+C_{2} ; \quad\left\|\nabla_{\theta} \sigma(\theta, x)\right\| \leq$ $C_{3} ;\left\|\nabla_{\theta}^{2} \sigma(\theta, x)\right\| \leq C_{3}$.

As for the smoothness conditions in Assumptions 3, they hold for many feature functions, e.g. tanh, sigmoid, smoothed relu.

Assumption 4:(initial value). We assume: $Q^{\prime}\left(p_{0}\right) \leq \infty$.
Assumption 4 holds for common distributions that have bounded second moments and are absolutely continuous with respect to the Lebesgue measure. A safe setting of p_{0} might be a standard Gaussian distribution.

2 Covergence of GD

It is not hard to observe that the continuous NN learning is a convex optimization problem in the infinite dimensional measure space. So by exploiting the convexity, we describe the properties for the solution of $Q^{\prime}(p)$ as follows.

Proposition (Global Optimal Solution) Suppose Assumption 2 and 3 hold, $Q^{\prime}(p)$ is convex with respect to p and has a unique optimal solution p^{*}, a.e., which satisfies:
$p^{*}=\frac{\exp \left(-\frac{\lambda_{1}}{2 \lambda_{3}}|u|^{2}-\frac{\lambda_{2}}{2 \lambda_{3}}\|\theta\|^{2}-\frac{u}{\lambda_{3}} E_{(x, y)}\left[l^{\prime}\left(f\left(\omega^{*}, \rho^{*}, x\right), y\right) \sigma(\theta, x)\right]\right)}{C_{5}}=\frac{\exp \left(-\frac{\psi_{p^{*}}}{\lambda_{3}}\right)}{C_{5}}$
where C_{5} is a finite constant for normalization. Moreover, we have $p^{*}>0$. Therefore, we can get that:
$Q^{\prime}(p)=E_{(x, y)}\left[l\left(\int \sigma(\theta, x) p(\theta, u) d u d \theta, y\right)\right]+\int\left(\frac{\lambda_{1}}{2}|u|^{2}+\frac{\lambda_{2}}{2}\|\theta\|^{2}\right) p d u d \theta+\lambda_{3} \int p \ln p d \theta d u$
Theorem (Convergence of NGD) Uner Assumption 2, 3, and 4, and suppose that p_{t} evolves, then p_{t} coverges weakly to p_{*}. Moreover,

$$
\lim _{t \rightarrow \infty} Q\left(p_{t}\right)=Q\left(p^{*}\right)
$$

Proof of sketch:
In this proof, we use θ to denote $[\theta, u]$.
Step 1. We prove that $E_{p_{t}}\|\theta\|^{2} \leq B_{M}, \forall t \geq 0$, where B_{M} is a finite constant.

Step 2. From Step 1, the second moment of $p_{t}\left(\theta^{\prime}\right)$ is uniformly bounded by B_{M}. So $p_{t}\left(\theta^{\prime}\right)$ is uniformly tight. Thus there exsits a p_{∞} and a subsequence p_{k} with $k \rightarrow \infty, p_{k}$ converges weakly to p_{∞}. Let:

$$
\psi_{p}(\theta, u)=\frac{\lambda_{1}}{2}|u|^{2}+\frac{\lambda_{2}}{2}\|\theta\|^{2}+u E_{(x, y)}\left[l^{\prime}\left(f_{p}(x), y\right) \sigma(\theta, x)\right]
$$

We prove:

$$
\lim _{k \rightarrow \infty} \int\left\|\nabla \psi_{p_{k}}-\nabla \psi_{p_{\infty}}\right\|^{2} p_{k} d \widetilde{\theta}=0
$$

Step 3. We further prove:

$$
\lim _{k \rightarrow \infty} \int\left|p_{k}^{1 / 2} \exp \left(\frac{\psi_{p_{\infty}}}{2 \lambda_{3}}\right)-c_{k}\right|^{2} G(\widetilde{\theta}) d \theta=0
$$

where

$$
G(\widetilde{\theta}) \propto \exp \left(-\frac{\lambda_{1}}{2 \lambda_{3}}|u|^{2}-\frac{\lambda_{2}}{2 \lambda_{3}}\|\theta\|^{2}\right)
$$

Step 4. Because c_{k} is bounded, we can take a sub-sequence t_{k} with $\lim _{k \rightarrow \infty} c_{t_{k}}=c_{\infty}$. Then:

$$
\lim _{k \rightarrow \infty} \int\left|p_{k}^{1 / 2} \exp \left(\psi_{p_{\infty}} / 2 \lambda_{3}\right)-c_{\infty}\right|^{2} G(\widetilde{\theta}) d \widetilde{\theta}=0
$$

Furthermore, there exists a sub-sequence $\tau_{k} \subseteq t_{k}$ such that:

$$
\lim _{k \rightarrow \infty} p_{\tau_{k}} \exp \left(\psi_{p_{\infty}} / 2 \lambda_{3}\right)=c_{\infty}, \text { a.e. }
$$

It follows that:

$$
p_{\tau_{k}} \rightarrow c_{\infty}^{2} \exp \left(\psi_{p_{\infty}} / \lambda_{3}\right)=\widetilde{p}_{\infty}, \text { a.e. }
$$

Let $\widetilde{p}_{\infty}=c_{\infty}^{2}\left(-\psi_{p_{\infty}} / \lambda_{3}\right)$. We prove $p_{\infty}=\widetilde{p}_{\infty}$, a.e.
Step 5. Finally, we prove that $\widetilde{p}_{\infty}=p_{\infty}=p^{*}$. a.e. and $\lim _{t \rightarrow \infty} Q\left(p_{t}\right)=$ $Q\left(P_{*}\right)$.

