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1 Assumptions

This section presents several assumptions needed for theoretical analysis.
Assumption 1:(activation function)
Assume that o (0, z) satisfies the following condition:

V0, E.[o(0,2)"] < B}

Assumption 2:(properties of the loss function). We assume:

1. I(y,y) is convex on ¥.

2. I(y,y) is bounded below, i.e., [(y,y) > B;.

3. I(y,y) is Ly — Lipschitz and has Ly — Lipschitz continous gradient.
e 1@ )| < Lu: UG y) — V(G w)| < Lol — Bl

Assumption 3:(properties of the feature activation function h'). Under
Assumption 1, we further assume:

1. for all z, 0(0, z) is second-order differentiable on 6.

2. for all z and 0, we assume |0(6,z)| < C1||0|| + Co; ||Veo(8,2)| <
Cs; [ V3o (0,2) < Cs.

As for the smoothness conditions in Assumptions 3, they hold for many
feature functions, e.g. tanh, sigmoid, smoothed relu.

Assumption 4:(initial value). We assume: Q'(py) < oo.

Assumption 4 holds for common distributions that have bounded sec-
ond moments and are absolutely continuous with respect to the Lebesgue
measure. A safe setting of pomight be a standard Gaussian distribution.

2 Covergence of GD

It is not hard to observe that the continuous NN learning is a convex opti-
mization problem in the infinite dimensional measure space. So by exploiting
the convexity, we describe the properties for the solution of Q’(p) as follows.



Proposition (Global Optimal Solution) Suppose Assumption 2 and
3 hold, @'(p) is convex with respect to p and has a unique optimal solution
p*, a.e., which satisfies:
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where Cjis a finite constant for normalization. Moreover, we have p* > 0.
Therefore, we can get that:

Qp) = Ezy) [l(/a(@,x)p(@,u)dud@,y)} +/ (%MQ + %HQH?) pdud9+)\3/plnpd9du

Theorem (Convergence of NGD) Uner Assumption 2, 3, and 4, and
suppose that p; evolves, then p;,coverges weakly to p,. Moreover,

Him Q(p) = Q(p7)

Proof of sketch:

In this proof, we use 6 to denote [0, u].

Step 1. We prove that E,,||0]|> < By, Vt > 0, where By is a finite
constant.

Step 2. From Step 1, the second moment of p,(6') is uniformly bounded
by Bas. So py(#') is uniformly tight. Thus there exsits a ps,and a subsequence
pr With k& — oco,prconverges weakly to p. Let:

Zp +

Up(0,u) = X S 01 + wBay [V (fp(), ) (6, )]

We prove:
i /vapk - prooHkadg: 0
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Step 3. We further prove:

hm /|pk/2 exp( wp‘x’) e ?G(0)do = 0,

where \
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Step 4. Because ¢, is bounded, we can take a sub-sequence t,with
limy_,o0 €1, = Coo. Then:

lchm / ’pllc/z exp(Yp., /2A3) — COOIZG(g)dgz 0
—00
Furthermore, there exists a sub-sequencer;, C t; such that:

kli_)rrolopﬂc exp(¢p., /2X3) = Coo, Q€.



It follows that:
Pr, — o exp(Vp. /A3) = Doos G.€.
Let Poo = A (=1 /A3). We prove ps = Do, a.c.

Step 5. Finally, we prove that ps = poo = p*. a.e. and lim;_,, Q(p;) =
Q(P.).



