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1 Assumptions

This section presents several assumptions needed for theoretical analysis.
Assumption 1:(activation function)
Assume that σ(θ, x) satisfies the following condition:

∀θ, Ex[σ(θ, x)2] ≤ B2
r

Assumption 2:(properties of the loss function). We assume:
1. l(ŷ, y) is convex on ŷ.
2. l(ŷ, y) is bounded below, i.e., l(ŷ, y) ≥ Bl.
3. l(ŷ, y) is L1 − Lipschitz and has L2 − Lipschitz continous gradient.

i.e., |l′(ŷ, y)| ≤ L1; |l′(ŷ1, y)− l′(ŷ2, y)| ≤ L2|ŷ1 − ŷ2|.
Assumption 3:(properties of the feature activation function h

′
). Under

Assumption 1, we further assume:
1. for all x, σ(θ, x) is second-order differentiable on θ.
2. for all x and θ, we assume |σ(θ, x)| ≤ C1∥θ∥ + C2; ∥∇θσ(θ, x)∥ ≤

C3; ∥∇2
θσ(θ, x)∥ ≤ C3.

As for the smoothness conditions in Assumptions 3, they hold for many
feature functions, e.g. tanh, sigmoid, smoothed relu.

Assumption 4:(initial value). We assume: Q′(p0) ≤ ∞.
Assumption 4 holds for common distributions that have bounded sec-

ond moments and are absolutely continuous with respect to the Lebesgue
measure. A safe setting of p0might be a standard Gaussian distribution.

2 Covergence of GD

It is not hard to observe that the continuous NN learning is a convex opti-
mization problem in the infinite dimensional measure space. So by exploiting
the convexity, we describe the properties for the solution of Q′(p) as follows.
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Proposition (Global Optimal Solution) Suppose Assumption 2 and
3 hold, Q′(p) is convex with respect to p and has a unique optimal solution
p∗, a.e., which satisfies:

p∗ =
exp

(
− λ1

2λ3
|u|2 − λ2

2λ3
∥θ∥2 − u

λ3
E(x,y) [l

′(f(ω∗, ρ∗, x), y)σ(θ, x)]
)

C5

=
exp(−ψp∗

λ3
)

C5

where C5is a finite constant for normalization. Moreover, we have p∗ > 0.
Therefore, we can get that:

Q′(p) = E(x,y)

[
l(

∫
σ(θ, x)p(θ, u)dudθ, y)

]
+

∫ (
λ1
2
|u|2 + λ2

2
∥θ∥2

)
pdudθ+λ3

∫
p ln pdθdu

Theorem (Convergence of NGD) Uner Assumption 2, 3, and 4, and
suppose that pt evolves, then ptcoverges weakly to p∗. Moreover,

lim
t→∞

Q(pt) = Q(p∗)

Proof of sketch:
In this proof, we use θ to denote [θ, u].
Step 1. We prove that Ept∥θ∥2 ≤ BM ,∀t ≥ 0, where BM is a finite

constant.
Step 2. From Step 1, the second moment of pt(θ

′
) is uniformly bounded

by BM . So pt(θ
′
) is uniformly tight. Thus there exsits a p∞and a subsequence

pk with k → ∞,pkconverges weakly to p∞. Let:

ψp(θ, u) =
λ1
2
|u|2 + λ2

2
∥θ∥2 + uE(x,y)[l

′(fp(x), y)σ(θ, x)]

We prove:

lim
k→∞

∫
∥∇ψpk −∇ψp∞∥2pkdθ̃ = 0

Step 3. We further prove:

lim
k→∞

∫
|p1/2k exp(

ψp∞
2λ3

)− ck|2G(θ̃)dθ = 0,

where

G(θ̃) ∝ exp(− λ1
2λ3

|u|2 − λ2
2λ3

∥θ∥2)

Step 4. Because ck is bounded, we can take a sub-sequence tkwith
limk→∞ ctk = c∞. Then:

lim
k→∞

∫
|p1/2k exp(ψp∞/2λ3)− c∞|2G(θ̃)dθ̃ = 0

Furthermore, there exists a sub-sequenceτk ⊆ tk such that:

lim
k→∞

pτk exp(ψp∞/2λ3) = c∞, a.e.
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It follows that:

pτk → c2∞ exp(ψp∞/λ3) = p̃∞, a.e.

Let p̃∞ = c2∞(−ψp∞/λ3). We prove p∞ = p̃∞, a.e.
Step 5. Finally, we prove that p̃∞ = p∞ = p∗. a.e. and limt→∞Q(pt) =

Q(P∗).
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