
CS 839: Theoretical Foundations of Deep Learning Spring 2022

Lecture 2 Theory of Representation Learning I

Instructor: Yingyu Liang Date: March 29th, 2022 Scriber: Nicholas Roberts

1 Background on Representation Learning

Early deep learning researchers faced a number of significant challenges when it came to
finding the right tricks for getting their systems to work: a shortage of a lack of heuristics
for designing deep learning algorithms, a lack of clarity with regard to the “correct” way to
train their models, and finally, a lack of labeled data (though, as usual, they had plenty of
unlabeled data). To make progress on some of these problems, early researchers proposed
unsupervised representation learning as a means to make the most out of their data by warm-
starting their training procedures with unlabeled data before training on what little labeled
data they had. Researchers found that these techniques resulted in more performant models
than those resulting from training on labeled data alone.

Nowadays, representation learning is still commonly used as a pre-training step. In many
cases, however, this pre-training step is done at a large scale by organizations who can af-
ford significant investments in compute (e.g. Google), and these pre-trained models are
(sometimes) made publicly available to researchers and practitioners to use for their own
downstream tasks. Domains which have enjoyed the most benefit from modern represen-
tation learning are computer vision, natural language processing, and even more recently,
combinations of data modalities from both of these fields – leading to state-of-the-art results
on downstream tasks in all of these domains.

So what exactly is representation learning and what are its goals? Generally, the goal of
representation learning is to learn a representation function via unsupervised learning which
can be used in downstream supervised learning tasks. Surprisingly, the unlabeled data that
was used to train the representation function need not be from the exact same distribution
that the downstream model is trained on (though it should probably be at least vaguely
related). For example, you might have a large corpus of unlabeled text from Wikipedia
that you would use to train your representation function, and your downstream task is
to classify movie reviews by their star ratings – these are different distributions, but the
representation function ideally will have captured something fundamental about language
that can be useful for movie review classification. Even more surprisingly, a downstream
model using high-quality representations doesn’t need to be complicated either – often,
linear models trained on high-quality representations of their data are competitive with
state-of-the-art deep learning methods.

In fact, a good representation is one with discriminative power – i.e., one that can be
used to train a downstream linear classifier on labeled data. Assuming your downstream task
is k-class classification, in the overly-optimistic ideal case, a perfect representation function
would be able to map all of the examples of each of the k classes to one of k vectors. That is,
the ideal scenario would be that we could guarantee that our unsupervised representations
would be linearly separable for a downstream classifier. This seems hard. What have people
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done to move toward this idealized scenario? A recent method in computer vision is to apply
various forms of data augmentation to images, and train the representation function to have
the same representation regardless of the augmentation strategy applied to it. Though
simple, this technique results in such high-quality representations that a downstream linear
classifier trained on ImageNet can compete with state-of-the-art deep learning methods –
this is a technique called “contrastive learning.”

2 Examples of Representation Learning

In this section, we will discuss a few popular examples of representation learning.

Autoencoders One of the simplest forms of representation learning are autoencoders [1].
Autoencoders map the input to some hidden representation and from the hidden represen-
taion, attempt to reconstruct the input. More precisely, neural network-based autoencoders
comprise two components: an encoder network h = f(x), which acts as our representation
function, and a decoder network r = g(h). Basic autoencoders are trained to minimize a loss
function of the form: L(x, r) = L(x, g(f(x))). Typically, the vector h is of lower dimension
than the input, so as to avoid learning trivial representation functions such as the identity
– this is called under-completeness. Other constraints, including the sparsity of h, can be
included in the loss function. When f, g are linear functions and when L is the L2-loss,
the resulting autoencoder is essentially PCA. On the other hand, when f, g are non-linear
functions, the result is considered to be a form of non-linear dimensionality reduction.

Contrastive Learning Another example of representation learning is contrastive learning,
and in particular, we will discuss a recent exemplary contrastive learning technique called
SimCLR [2]. This technique is motivated by the fact that for images, data augmentation
typically does not change the class label. The goal is to move representations of different
data augmentation transformations, denoted t, t′ ∼ T , of the same image closer together
using a “contrastive” loss. In practice, the output layer itself is not used as part of the final
representation function, and a previous layer is used (in other words, there is a “projection
head” that gets discarded after pre-training). The training routine and contrastive loss
function are given in the figure below.

Masked Self-Supervised Learning A third example of representation learning are
masked self-supervised learning techniques, an example of which is BERT [3]. This is a
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family of techniques which are typically applied to text, and involve learning a representa-
tion function for words given the context (i.e., the surrounding words). This is usually done
by training a language model to fill-in missing words in a sentence. In language modeling
problems such as this, the output is typically a softmax over the entire vocabulary. The
resulting representation function is the encoder portion of the network shown below, which
is usually a transformer-based architecture.
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3 Theoretical Framework for Representation Learning

While these representation learning techniques may seem complex and diverse, it is indeed
possible to study them theoretically using the same set of tools. In particular, [4] proposes a
unifying theoretical framework for analyzing the sample complexity of each of these methods
when viewed as regularization applied to the representation, in the form of a learnable
function using unlabeled data. In this setting, our focus will be on sample complexity using
uniform convergence bounds, and we will ignore problems related to optimization.

Preliminaries Denote our set of unlabeled examples as U = {x̃i}mu
i=1 where x̃i ∼ Ux and

denote our set of labeled examples as S = {(xi, yi)}ml
i=1 with (xi, yi) ∼ D and marginal Dx.

Note that Ux and Dx are not required to be the same distribution.

In all of the above examples of representation learning algorithms, the representation
learning procedure proceeds as follows:

1. Learn a representation function ϕ(·) by minimizing some loss Lr using U .

2. Learn a downstream model ŷ = f(ϕ(x)) by minimizing some other loss Lc(ŷ, y) ∈ [0, 1]
using S.

Where the models for both steps are chosen from their respective hypothesis classes,
denoted as ϕ ∈ Φ and f ∈ F .

Autoencoders in the representation learning framework Concretely, let’s take the
example of learning a downstream classifier on an autoencoder... Consider functions from the
following hypothesis classes representing the encoder, decoder, and the downstream classifier,
respectively:

h ∈ H, g ∈ G, f ∈ F .

In this case, we have the following procedure:

1. Learn h(·) by minimizing Lr = Ê∥X − r∥22 = Ê∥X − g(h(x))∥22 using U .

2. Learn a downstream classifier ŷ = f(h(x)) by minimizing Ê[Lc(f(h(x)), y)] using S.

In the first step, we’re doing some loss minimization – crucially, note that this is not a
classification loss and it furthermore doesn’t involve labels! Let’s call this the regularization
loss. Denote the regularization loss for autoencoders over the unlabeled data distribution as
Lr(h, g;Ux) = Ex∼Ux [Lr(h, g;x)] ∈ [0, 1]. Furthermore, denote Lr(h;Ux) = ming Lr(h, g;Ux).
After minimizing this loss, g is discarded and we use ϕ(·) = h.

Combining all of these, the representation learning problem is the following optimization:

min
f∈F ,h∈H

Lc(f ◦ h;S) s.t. Lr(h;Ux) ≤ τ.

To see how this results in a regularized subset of the end-to-end fully-supervised hypoth-
esis class F ◦H, assume Ux = Dx. Then, we can write the subset of representation functions
feasible in the above optimization problem as

HDx,Lr(τ) = {h ∈ H : Lr(h,Dx) ≤ τ} ⊆ H.
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Then our regularized class of functions in this representation learning framework is

F ◦ HDx,Lr(τ) ⊆ F ◦ H,

where F ◦ H is the class of functions considered in end-to-end fully-supervised learning.
This regularized subset excludes “bad” representation functions in H. This is depicted
diagrammatically below.
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