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1 Motivation and Model Definition

We consider the problem of unsupervised representation learning. In this setting we use
unlabeled data to learn a representation function f(x) of features x so that classification
using f(x) in place of x is easier and requires less labeled data. For example, such
a representation for image classification is the output of the second to last layer of some big
deep net trained on a lot of data (e.g., on ImageNet). Another example is text embeddings
which are low-dimensional representations of pieces of text that are used in NLP.

To learn the representation f we assume access to pairs of data points (x, x+) (text or
images) that are more similar than randomly sampled points. We try to find f that maps
x and x+ to vectors closer (more parallel), i.e., we want the inner product f(x)Tf(x+) to
be much larger than f(x)Tf(x−), where x− is simply a randomly selected datapoint. More
concretely, the following loss function is considered (to learn representations for sentences
[2]):

Ex,x+,x−

[
− log

(
ef(x)

T f(x+)

ef(x)
T f(x+) + ef(x)

T f(x−)

)]
(1)

It seems intuitive that minimizing such loss functions should lead to representations that
capture similarity. In this lecture we present a theoretical model introduced in [1] that
shows (under assumptions) that the learned representations (using only unlabeled data)
should do well on the relevant classification task. They use the term Contrastive Learning
to refer collectively to representation learning methods that assume access to similar pairs
(x, x+) and to some x− dissimilar to x (we will call x− a negative sample).

We first set up notation and describe the framework for unlabeled data and classification
tasks that will be essential for our analysis. Let X denote the set of all possible data points.
Contrastive learning assumes access to similar data in the form of pairs (x, x+) that come
from a distribution Dsim as well as k i.i.d. negative samples x−

1 , x
−
2 , . . . , x

−
k from a distribution

Dneg that are presumably unrelated to x. We denote by F the class of representation
functions f : X → Rd, such that ∥f(·)∥ ≤ R for some R > 0.

Similarity Distributional Model

To formalize the notion of similar pairs (x, x+), we introduce the concept of latent classes.
Let C denote the set of all latent classes. Each class c ∈ C induces a probability distribution
Dc over X that represents how relevant x is to class c. For example, X could be images and
c the class “dog” whose associated Dc assigns high probability to images containing dogs
and low probabilities to other images. We notice that in this model, classes can overlap: an
image of a baby playing with a dog can be sampled both from Ddog and from Dbaby. We also
assume a distribution ρ over the classes that captures how often each class c occurs in the
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unlabeled data. We assume that similar data points x, x+ are drawn i.i.d. from the same
class distribution Dc for some class c. On the other hand, negative samples are drawn from
the marginal of Dsim:

Dsim(x, x
+) = E

c∼ρ
[Dc(x)Dc(x

+)] (2)

Dneg(x
−) = E

c∼ρ
[Dc(x

−)] (3)

In other words the generative process of a similar pair (x, x+) and negative sample x− given
in the unsupervised representation learning algorithm is as follows:

1. Sample two classes c1 ∼ ρ and c2 ∼ ρ independently.

2. Sample x, x+ independently from the same class marginal Dc1 , i.e., (x, x
+) ∼ D2

c1
.

3. Independently (from all the above) draw a negative sample x− ∼ Dc2 .

This is the most important modelling assumption that we are making. It is plausible since
it allows for classes to overlap but it is still rather strong.

Testing the Quality of Representations

We formalize the classification tasks that a representation function f will be tested on.
For simplicity we will focus on a binary supervised task T that consists of two classes
{c+, c−} ⊆ C. The labeled dataset for the task T consists of m i.i.d. draws from the
following generative process:

1. A label c ∈ {c+, c−} is picked according to a distribution DT . We will assume that
DT is simply the uniform distribution over the two labels. We refer to [1] for the more
general case.

2. A datapoint x is drawn from the class conditional distribution Dc.

Therefore, a labeled pair (x, c) has joint distribution

DT (x, c) = DT (c)Dc(x) (4)

We observe that the data distributions Dc of the classification task are the same as in the
unlabeled data. This allows for theoretically justifying that capturing similarity in unlabeled
data leads to quantitative guarantees on the classfication tasks.

The quality of the representation function f is evaluated by its performance on a classi-
fication task T using linear classification. A binary classifier for T is a function g : X → R2

whose output coordinates are indexed by the classes c in task T The loss incurred by g on
point (x, y) ∈ X × T is defined as L(g(x)y − g(x)y′) with y′ ̸= y. Since we are focusing on
binary classification given a label y there always one option for y′ ̸= y and therefore we can
think of the loss function L(z) as a one-dimensional function. For example, L(z) may be
logistic loss L(z) = ln (1 + exp(−z)) for z ∈ R. Therefore, when the observed label is y = c+

we look in the difference g(x)c+ − g(x)c− . If this difference is large (which means that our
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classifier g is putting a lot of weight on the true class) then its logistic loss will be small. We
refer to [1] for the corresponding definitions of the more general multiclass setting. We shall
use the notation {g(x)c− g(x)c′}c′ ̸=c ∈ R to denote the difference between the observed class
c and the other class c′. The supervised loss of the classifier g is then:

Lsup(T , g) := E
(x,c)∼DT

[
L
(
{g(x)c − g(x)c′}c′ ̸=c

)]
To use a representation function f with a linear classifier, we train linear weight layer W ∈
Rk×d on top of the representation f(x). In other words, the final classifier is g(x) = Wf(x).
For our simpler case of binary classification, we have that the matrix W has only two rows,
i.e., W ∈ R2×d. Since the best W can be found by fixing f and training a linear classifier,
we abuse notation and define the supervised loss of f on T to be the loss when the best W
is chosen for f :

Lsup(T , f) = inf
W∈R2×d

Lsup(T ,Wf) (5)

Since contrastive learning has access to data with latent class distribution ρ, it is natural
to have better guarantees for tasks involving classes that have higher probability in ρ. We
can take the average over a pair of independent labels (conditional that they are different)
and define the following average loss of a representation f :

Lsup(f) := E
c+,c−∼ρ2

[
Lsup({c+, c−}, f) | c+ ̸= c−

]
2 Contrastive Learning and Main Theorem

We describe the training objective for contrastive learning. We choose the same loss function
L as in the supervised problem above. Let (x, x+) ∼ Dsim be a similar pair and x− ∼ Dneg a
negative sample. The population unsupervised loss used by the contrastive algorithm is

Lun(f) := E
[
L
(
f(x)T

(
f(x+)− f(x−)

)) ]
(6)

and its empirical version is L̂un(f) =
1
M

∑M
j=1 L

(
f(xj)

T
(
f(x+

j )− f(x−
j )
))
.

Note that, by the assumptions of the framework described above (see the generative
process of similar and negative samples), we can express the unsupervised loss as

Lun(f) = E
c+,c−∼ρ2

E
x,x+∼D2

c+

x−∼Dc−

[
L
(
f(x)T

(
f(x+)− f(x−)

))]
In order to learn a representation function from F we try to find a function that minimizes
the empirical unsupervised loss. The representation f̂ will be then used to improve the
performance of supervised linear classification tasks. The ideal result would be to show that
the supervised error of the learned representation f̂ is better than the error of any other f .

Lsup(f̂) ≤ inf
f∈F

Lsup(f) .

We cannot prove the above but we can prove the following theorem on the performance of
the learned representation f̂ .
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Theorem 1. Let τ = Pc,c′∼ρ2 [c = c′] be the probability that two random classes coincide
(hitting probability). Then it holds that:

Lsup(f̂) ≤
1

1− τ
(Lun(f)− τ) +

1

1− τ
Gen ∀f ∈ F

The above theorem essentially translates the unsupervised error of f into a supervised
error guarantee. To prove the theorem we first we need to handle the generalization error.
We can show that with probability at least 1 − δ over the training set S, of size M , for all
f ∈ F it holds that

Lun(f̂) ≤ Lun(f) + ϵM .

The standard generalization argument to prove the above is to first show that for every
f ∈ F it holds |L̂un(f) − Lun(f)| ≤ ϵM/2. We can do that using some complexity measure
(for example Rademacher complexity). We then have that for every f ∈ F it holds

Lun(f̂) ≤ L̂un(f̂) + ϵM/2 ≤ L̂un(f) + ϵM/2 ≤ Lun(f) + ϵM .

To keep this presentation simple we shall ignore the generalization error (for more details
see [1]) and focus on the following key lemma. We shall define the following notion of the
mean classifier using a specific W where the rows are the means of the representations of
each class.

Definition 2 (Mean Classifier). For a function f and task T = (c+, c−), the mean classifier is
W µ whose cth row is the mean µc of representations of inputs with label c: µc := E

x∼Dc

[f(x)].

We denote its loss Lsup(T ,W µf) by Lµ
sup(T , f). The average supervised loss of its mean

classifier is

Lµ
sup(f) := E

c+,c−∼ρ2

[
Lµ
sup({c+, c−}, f) | c+ ̸= c−

]
We now prove the following key lemma that bounds by above the supervised loss of the

mean classifier.

Lemma 3. For all f ∈ F it holds that

Lµ
sup(f) ≤

1

(1− τ)
(Lun(f)− τ)

Proof. The key idea in the proof is the use of Jensen’s inequality. Unlike the unsupervised
loss which uses a random point from a class as a classifier, using the mean of the class as
the classifier should only make the loss lower. Let µc = E

x∼Dc

f(x) be the mean of the class c.

Using the definitions of Dsim and Dneg we have

Lun(f) = E
(x,x+)∼Dsim

x−∼Dneg

[
L(f(x)T (f(x+)− f(x−)))

]
= E

c+,c−∼ρ2

x∼Dc+

E
x+∼Dc+

x−∼Dc−

[
L(f(x)T (f(x+)− f(x−)))

]
.
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Using the convexity of the loss L and Jensen’s inequality, we obtain

Lun(f) ≥ E
c+,c−∼ρ2

E
x∼Dc+

[
L(f(x)T (µc+ − µc−))

]
= (1− τ) E

c+,c−∼ρ2
[Lµ

sup({c+, c−}, f)|c+ ̸= c−] + τ

= (1− τ)Lµ
sup(f) + τ

where the first equality follows by splitting the expectation into the cases c+ = c− and
c+ ̸= c−, and the final equality follows by using the symmetry in c+ and c− since we assumed
that classes in tasks are uniformly distributed.
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