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In this lecture, we introduce the statistical query (SQ) model and the lower bound of
learning neural networks using the statistical query dimension. The purpose of this lecture
is to introduce the SQ lower bound technique, a tool often used in deriving complexity
results and is more specific for machine learning. All the lower bounds essentially depend
on certain computational models, where typical lower bound bounds base on the NP ̸= P
hardness assumption. SQ lower bound is another kind of lower bound which does not assume
that certain family of problems is hard. Instead SQ lower bound considers the statistical
query algorithms, which essentially covers all the algorithms we know (except for Gaussian
elimination).

1 Statistical Query Model

We first define the SQ model formally. We assume that the learning algorithm can only
receive information about the data through statistical queries. A statistical query is specified
by some polynomially-computable property predicate Q of labeled instances and a tolerance
parameter τ ∈ [0, 1] over (x, y) ∼ D where D is the data distribution. For a query (Q, τ),

the algorithm receives a response P̂Q ∈ [PQ − τ, PQ + τ ], where PQ = Pr[Q(x, y) is true].

2 Lower bounds for learning without input structure

Definition 1 (Definition 2 in [1]). For concept class C and distribution D, the statistical
query dimension SQ-DIM(C,D) is the largest number d such that C contains d concepts
c1, ..., cd that are nearly pairwise uncorrelated: specifically, for all i ̸= j,∣∣∣ Pr

x∼D
[ci(x) ̸= xj(x)]− Pr

x∼D
[ci(s) ̸= cj(x)]

∣∣∣ ≤ 1/d3.

Theorem 2. (Theorem 12 in [1]) In order to learn C to error less than 1/2 − 1/d3 in the
SQ model, where d = SQ-DIM(C,D), either the number of queries or 1/τ must be at least
d3/2.

To show that learning is hard, we want to show that the SQ dimension for some concept
class that can be approximated our learned function is not small. We can consider some hard
concept classes and show that their SQ dimension is large, thus we show a lower bound on
network learning. In particular, we consider the family of parity functions, which is known
as the most uncorrelated family of function. Let us first give the formal definition of parity
functions.

Let X = {±1}d ∼ D where D uniform. For any A ∈ [D], we define the concept class
C : y = gA(x) =

∏
j∈A xj where |A| = k. It is said to be the most uncorrelated family of
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function because for any A,B ⊆ [D], A ̸= B, gA and gB are orthogonal in expectation within
the functional space. In particular we have

EA ̸=B
x∼D [gA(x)gB(x)] = E

 ∏
j∈A∩B

x2
j

∏
j∈A\B

xj

∏
j∈B\A

xj


= E

 ∏
j∈A\B

xj

E

 ∏
j∈A∩B

x2
j

∏
j∈B\A

xj

 w.l.o.g. that A \B non-empty

= 0.

This feature of parity functions implies d = SQ-DIM(C,D) =
(
D
k

)
, and hence we immedi-

ately get a exponential in k lower bound on the number of queries to learn the above concept
class.

3 Approximating Parity Functions with 2-Layer Neu-

ral Networks

We now show that there is a two-layer network that can fit the labels generated by any
parity function, which is the “hard” concept class described above.

Lemma 3. For any parity function gA where A ⊆ [D] and |A| = k, there exists a 2-layer
neural network f(x) with ReLU activation functions s.t. f(x) = gA(x) for all x ∈ X and f
has Θ(k) hidden units.

Proof. We show how to construct a 2-layer neural network with Θ(k) that can perfectly
represent gA for any A ⊆ [D]. Consider the case when k is even (note that the proof for k
odd is similar, so we omit it here).

We define zj = (xj + 1)/2 ∈ {0, 1}, mapping xj from {−1,+1} to {0, 1}. Denote z =∑
j∈A zj the count of ones in subset A. Therefore if z is even, then gA(x) = +1, and if z is

odd, then gA(x) = −1. Notice that z ∈ {0, ..., k}, so the idea is to use indicator function to
output each possible value of z. If we can get the function δs(z) as illustrated in Diagram 3
with ReLUs, then we can build a 2-layer neural network as follows:

f(x) =
∑
s∈[k]

δs(z)(−1)s.

Let σ1(z) = σ(z − (s − 1/2)), σ2(z) = σ(z − s) and σ3(z) = σ(z − (s + 1/2)) where σ(z) is
the standard ReLU activation. Then for any s ∈ R, we can write

δs(z) = 2(σ1 − σ2)− 2(σ2 − σ3) = 2σ1 − 4σ2 + 2σ3

and this is simply a linear combination of three ReLU nodes. Consequentially we can con-
struct a 2-layer neural network with ReLU activation to perfectly fit the labels generated by
gA for any A ⊆ [D] with at most 3(k + 1) = Θ(k) hidden units.
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If you can consider learning a concept class of a 2-layer neural network with Θ(k) hidden
units, then it covers the family of parity functions as a special case. This lemma tells us that
learning neural networks in general should be quite hard.

4 Other remarks

• Instead of showing the worst case learning of the concept class, we could also consider
the average case learning guarantee by assuming a certain distribution over our concept
class. However, recent results have shown that learning neural networks in this weaker
case still hard (not quite NP-hard, but quite close in terms of hardness). This tells us
that we need to impose additional assumptions such as the input distribution in order
to better guarantees.

• For example, consider a special input distribution as follows: Suppose x follows that
xA = [1, ..., 1]T , x¬A = Unif(±1), and we generate labels with y = gA(x) for some A ⊆
[D]. Since the input distribution heavily depends on A and correlate with the ground
truth concept, we cans see that this concept can be easily learned with constant number
of samples by summing up the values of samples at each coordinate to determine
whether it is part of A.
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