Theoretical Foundations of Deep Learning: Course Overview

CS 839@UW-Madison
Yingyu Liang
Teaching team

• Yingyu Liang
 email: yliang@cs.wisc.edu
 office hours: Thu 1-2pm
 office: CS building 5387

• Graders: Parashar Akshay, aparashar@wisc.edu

• More Information on course website:
 https://pages.cs.wisc.edu/~yliang/cs839_spring22/index.html
Where to find content

• Canvas – private materials that should not be shared
 • Assignments
 • Grades

• Course website – public materials
 • Slides
 • Schedule
 • Policies

• Piazza
 • Discussion, questions
 • Announcements
Major goals

1. Learn about open questions/challenges in theoretical analysis of deep learning
2. Learn about existing techniques/results
3. Try to propose new questions/techniques and get new results

Emphasize on open discussion

May not fit: if just interested in using deep learning or the empirical aspects, but not about its theoretical analysis
Discussions

1. What is Deep Learning?

2. What is the meaning of Theoretical Foundations?

3. Why care about theoretical analysis?
Course requirements

• ~5 homework assignments: 40%
 • Math analysis
 • post on Canvas; submit your solutions on Canvas

• Paper presentation: 10%
• Lecture note scribe: 10%

• Project: 40%
Expected background

• (CS760 or CS761 or CS861)

• AND strong math background in
 • machine learning
 • probability/statistics
 • optimization
Standard Tools

• Understanding machine learning: From theory to algorithms. Shai Shalev-Shwartz, and Shai Ben-David. Cambridge University Press, 2014.

• High-Dimensional Probability: An Introduction with Applications in Data Science. Roman Vershynin. Cambridge University Press, 2018

Topics

- Challenges in theoretical analysis of deep learning
- Approximation/representation power of neural networks
- Neural Tangent Kernel (NTK)
- Mean-field analysis
- Optimization: landscape, Implicit regularization
- May consider: complexity, representation learning, GAN, …
Assignments
Review reading

- Understanding machine learning: From theory to algorithms. First 4 chapters.
- High-Dimensional Probability: An Introduction with Applications in Data Science. Chapter 1, 2, 8

- Links can be found on course website: https://pages.cs.wisc.edu/~yliang/cs839_spring22/index.html
HW1: Background test

• Will post on Canvas
• Will set up how to submit the solutions on Canvas

• If you find many questions intimidating, we suggest you drop the course and take it again in the future when you are more prepared

Topics:
• ML theory basics
• probability
• Optimization basics
THANK YOU