Theoretical Foundations of Deep Learning: Challenges

CS 839@UW-Madison Yingyu Liang

3

- g^* : the ground-truth
- *h_{opt}*: the optimal hypothesis on the data distribution
- *ĥ_{opt}*: the optimal hypothesis on the training data
- \hat{h} : the trained hypothesis

The tradeoffs of large scale learning. Léon Bottou and Olivier Bousquet. Proceedings of the 20th International Conference on Neural Information Processing Systems, 2007.

- $R(\hat{h}) R(g^*)$
- $= R(h_{opt}) R(g^*)$
- $+ R(\hat{h}_{opt}) R(h_{opt})$

 $+ R(\hat{h}) - R(\hat{h}_{opt})$

- Representation power (approximation error)
- Generalization (estimation error)
- Optimization (optimization error)

Fundamental Questions

• Optimization:

Why can find W with good accuracy on training data?

Generalization:

Why the network also accurate on new test instances?

• First key challenge: the optimization is non-convex

Empirical Success v.s. Theoretical Hardness

• Theoretically hard

• Training a 3-Node Neural Network is NP-Complete [Blum & Rivest, 93]

Training a 3-node neural network is NP-complete. Avrim Blum, and Ronald Rivest. Neural Networks 1992.

Empirical Success v.s. Theoretical Hardness

Practically quite feasible

- Simple algorithms like SGD often find good solutions
- Practical networks are often very large and deep: hundreds of layers, thousands of nodes per layer

Key Challenge: Optimization

- Optimization lies in the center of many mysteries
- Empirical success v.s. theoretical hardness
- Overparameterized networks still good, contrast to traditional theory
 - So even if we assume optimization can be done, still cannot explain the good generalization performance
 - Optimization & generalization interweave with each other for NN learning

- Empirical observation: practical DNNs easily fit random labels
- First replace the training labels with random labels
- Then train with net architectures and methods used in practice

Understanding deep learning requires rethinking generalization. Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals. ICLR 2017.

• Empirical observation: practical DNNs easily fit random labels

- 1. Practical DNNs are overparameterized
 - Sufficient to fit random labels \rightarrow sufficient to fit labels with structure

• Empirical observation: practical DNNs easily fit random labels

- 1. Practical DNNs are overparameterized
- 2. Even optimization on random labels remains easy
 - Simple methods (variants of SGD) can converge to 0 (global optima)

• Empirical observation: practical DNNs easily fit random labels

- 1. Practical DNNs are overparameterized
- 2. Even optimization on random labels remains easy
- 3. Optimization automatically adapts to the structure of the data
 - With random labels, it fits the training labels by memorization (no generalization)
 - With practical labels with structure, it learns the underlying structure without memorization (good generalization)

• Empirical observation: practical DNNs easily fit random labels

- 1. Practical DNNs are overparameterized
- 2. Even optimization on random labels remains easy
- 3. Optimization automatically adapts to the structure of the data
- Appear to contradict traditional theory!