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Risk Decomposition

•𝑔∗: the ground-truth 

• ℎ"#$: the optimal hypothesis 
on the data distribution

• #ℎ"#$: the optimal hypothesis 
on the training data

• #ℎ: the trained hypothesis
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The tradeoffs of large scale learning. Léon Bottou and Olivier Bousquet. Proceedings of the 
20th International Conference on Neural Information Processing Systems, 2007.
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Risk Decomposition

Approximation error

Estimation error

Optimization error
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Risk Decomposition

• Representation power (approximation error)

• Generalization (estimation error)

• Optimization (optimization error)



Fundamental Questions

• Optimization: 
Why can find 𝑊 with good accuracy on training data?

• Generalization: 
Why the network also accurate on new test instances? 

• First key challenge: the optimization is non-convex



Empirical Success v.s. Theoretical Hardness

• Theoretically hard
• Training a 3-Node Neural Network is NP-Complete [Blum & Rivest, 93]

Training a 3-node neural network is NP-complete. Avrim Blum, and Ronald Rivest. Neural 
Networks 1992.



Empirical Success v.s. Theoretical Hardness

• Practically quite feasible
• Simple algorithms like SGD often find good solutions
• Practical networks are often very large and deep: hundreds of layers, 

thousands of nodes per layer



Key Challenge: Optimization

• Optimization lies in the center of many mysteries
• Empirical success v.s. theoretical hardness
• Overparameterized networks still good, contrast to traditional theory

• So even if we assume optimization can be done, still cannot explain the 
good generalization performance

• Optimization & generalization interweave with each other for NN learning



DNNs Easily Fit Random Labels

• Empirical observation: practical DNNs easily fit random labels

• First replace the training labels with random labels
• Then train with net architectures and methods used in practice

Understanding deep learning requires rethinking generalization. Chiyuan Zhang, 
Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals. ICLR 2017.



DNNs Easily Fit Random Labels

• Empirical observation: practical DNNs easily fit random labels

Surprising implications:
1. Practical DNNs are overparameterized

• Sufficient to fit random labels à sufficient to fit labels with structure



DNNs Easily Fit Random Labels

• Empirical observation: practical DNNs easily fit random labels

Surprising implications:
1. Practical DNNs are overparameterized
2. Even optimization on random labels remains easy

• Simple methods (variants of SGD) can converge to 0 (global optima)



DNNs Easily Fit Random Labels

• Empirical observation: practical DNNs easily fit random labels

Surprising implications:
1. Practical DNNs are overparameterized
2. Even optimization on random labels remains easy
3. Optimization automatically adapts to the structure of the data

• With random labels, it fits the training labels by memorization (no 
generalization)

• With practical labels with structure, it learns the underlying structure 
without memorization (good generalization)



DNNs Easily Fit Random Labels

• Empirical observation: practical DNNs easily fit random labels

Surprising implications:
1. Practical DNNs are overparameterized
2. Even optimization on random labels remains easy
3. Optimization automatically adapts to the structure of the data

• Appear to contradict traditional theory!


