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Abstract In this chapter, we present a weakly-supervised approach that discovers

the spatial extent of relative attributes, given only pairs of ordered images. In con-

trast to traditional approaches that use global appearance features or rely on key-

point detectors, our goal is to automatically discover the image regions that are

relevant to the attribute, even when the attribute’s appearance changes drastically

across its attribute spectrum. To accomplish this, we first develop a novel formu-

lation that combines a detector with local smoothness to discover a set of coherent

visual chains across the image collection. We then introduce an efficient way to gen-

erate additional chains anchored on the initial discovered ones. Finally, we automat-

ically identify the visual chains that are most relevant to the attribute (those whose

appearance has high high correlation with attribute strength), and create an ensem-

ble image representation to model the attribute. Through extensive experiments, we

demonstrate our method’s promise relative to several baselines in modeling relative

attributes.

1 Introduction

Visual attributes are human-nameable object properties that serve as an interme-

diate representation between low-level image features and high-level objects or

scenes [24, 10, 21, 9, 31, 33, 34, 17]. They yield various useful applications in-

cluding describing an unfamiliar object, retrieving images based on mid-level prop-

erties, “zero-shot” learning [30, 24, 31], and human-computer interaction [4, 5].

Researchers have developed systems that model binary attributes [24, 10, 21]—a
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Fig. 1: The spatial extent of an attribute consists of the image regions that are most relevant to the
existence/strength of the attribute. Thus, an algorithm that can automatically identify the spatial
extent of an attribute will be able to more accurately model it.

property’s presence/absence (e.g., “is furry/not furry”)—and relative attributes [31,

36, 35]—a property’s relative strength (e.g., “furrier than”).

While most existing computer vision algorithms use global image representa-

tions to model attributes (e.g., [24, 31]), we humans, arguably, exploit the benefits

of localizing the relevant image regions pertaining to each attribute (see Fig. 1).

Indeed, recent work demonstrates the effectiveness of using localized part-based

representations [3, 35, 45]. They show that attributes—be it global (“is male”) or

local (“smiling”)—can be more accurately learned by first bringing the underlying

object-parts into correspondence, and then modeling the attributes conditioned on

those object-parts. For example, the attribute “wears glasses” can be more easily

learned when people’s faces are in correspondence. To compute such correspon-

dences, pre-trained part detectors are used (e.g., faces [35] and people [3, 45]). How-

ever, because the part detectors are trained independently of the attribute, the learned

parts may not necessarily be useful for modeling the desired attribute. Furthermore,

some objects do not naturally have well-defined parts, which means modeling the

part-based detector itself becomes a challenge.

The method in [7] addresses these issues by discovering useful, localized at-

tributes. A drawback is that the system requires a human-in-the-loop to verify

whether each discovered attribute is meaningful, limiting its scalability. More im-

portantly, the system is restricted to modeling binary attributes; however, relative

attributes often describe object properties better than binary ones [31], especially if

the property exhibits large appearance variations (see Fig. 2).

So, how can we develop robust visual representations for relative attributes, with-

out expensive and potentially uninformative pre-trained part detectors or humans-in-
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Fig. 2: (top) Given pairs of images, each ordered according to relative attribute strength (e.g.,
“higher/lower-at-the-heel”), (bottom) our approach automatically discovers the attribute’s spatial
extent in each image, and learns a ranking function that orders the image collection according to
predicted attribute strength.

the-loop? To do so, we will need to automatically identify the visual patterns in each

image whose appearance correlates with (i.e., changes as a function of) attribute

strength. This is a challenging problem: as the strength of an attribute changes, the

object’s appearance can change drastically. For example, if the attribute describes

how “high-heeled” a shoe is, then pumps and flats would be on opposite ends of

the spectrum, and their heels would look completely different (see Fig. 2). Thus,

identifying the visual patterns that characterize the attribute is very difficult without

a priori knowledge of what a heel is. Moreover, it is even more difficult to do so

given only samples of pairwise relative comparisons, which is the typical mode of

relative attribute annotation.

In this chapter, we describe a method that automatically discovers the spatial ex-

tent of relative attributes in images across varying attribute strengths. The main idea

is to leverage the fact that the visual concept underlying the attribute undergoes a

gradual change in appearance across the attribute spectrum. In this way, we pro-

pose to discover a set of local, transitive connections (“visual chains”) that establish

correspondences between the same object-part, even when its appearance changes

drastically over long ranges. Given the candidate set of visual chains, we then au-

tomatically select those that together best model the changing appearance of the

attribute across the attribute spectrum. Importantly, by combining a subset of the

most-informative discovered visual chains, our approach aims to discover the full

spatial extent of the attribute, whether it be concentrated on a particular object-part

or spread across a larger spatial area.

To our knowledge, no prior work discovers the spatial extent of attributes, given

weakly-supervised pairwise relative attribute annotations. Towards this goal, impor-

tant novel components include: (1) a new formulation for discovery that uses both

a detector term and a smoothness term to discover a set of coherent visual chains,

(2) a simple but effective way of quickly generating new visual chains anchored
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on the existing discovered ones, and (3) a method to rank and combine a subset of

the visual chains that together best capture the attribute. We apply our approach to

three datasets of faces and shoes, and outperform state-of-the-art methods that use

global image features or require stronger supervision. Furthermore, we demonstrate

an application of our approach, in which we can edit an object’s appearance condi-

tioned on the discovered spatial extent of the attribute. This chapter expands upon

our previous conference paper [43].

2 Related Work

In this section, we review related work in visual attributes and visual discovery.

2.1 Visual attributes

Most existing work use global image representations to model attributes (e.g., [24,

31]). Others have demonstrated the effectiveness of localized representations. For

example, the attribute “mouth open” can be more easily learned when people’s

mouths are localized. Early work showed how to localize simple color and shape at-

tributes like “red” and “round” [12]. Recent approaches rely on pre-trained face/body

landmark or “poselet” detectors [20, 21, 3, 16, 45], crowd-sourcing [7], or assume

that the images are well-aligned and object/scene-centric [2, 42], which either re-

stricts their usage to specific domains or limits their scalability. Unlike these meth-

ods that try to localize binary attributes, we instead aim to discover the spatial ex-

tent of relative attributes, while forgoing any pre-trained detector, crowd-sourcing,

or object-centric assumptions.

While the “relative parts” approach of [35] shares our goal of localizing relative

attributes, it uses strongly-supervised pre-trained facial landmark detectors, and is

thus limited to modeling only facial attributes. Importantly, because the detectors are

trained independently of the attribute, the detected landmarks may not necessarily be

optimal for modeling the desired attribute. In contrast, our approach aims to directly

localize the attribute without relying on pre-trained detectors, and thus can be used

to model attributes for any object.

2.2 Visual discovery

Existing approaches discover object categories [38, 8, 13, 32, 29], low-level fore-

ground features [27], or mid-level visual elements [37, 6]. Recent work shows how

to discover visual elements whose appearance is correlated with time or space, given

images that are time-/geo-stamped [26]. Algorithmically, this is the closest work to
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ours. However, our work is different in three important ways. First, the goal is differ-

ent: we aim to discover visual chains whose appearance is correlated with attribute
strength. Second, the form of supervision is different: we are given pairs of im-

ages that are ordered according to their relative attribute strength, so unlike [26], we

must infer a global ordering of the images. Finally, we introduce a novel formulation

and efficient inference procedure that exploits the local smoothness of the varying

appearance of the attribute, which we show in Sec. 4.4 leads to more coherent dis-

coveries.

3 Approach

Given an image collection S={I1, . . . , IN} with pairwise ordered and unordered

image-level relative comparisons of an attribute (i.e., in the form of Ω(Ii)>Ω(I j)
and Ω(Ii)≈Ω(I j), where i, j∈{1, . . . ,N} and Ω(Ii) is Ii’s attribute strength), our goal

is to discover the spatial extent of the attribute in each image and learn a ranking

function that predicts the attribute strength for any new image.

This is a challenging problem for two main reasons: (1) we are not provided

with any localized examples of the attribute so we must automatically discover
the relevant regions in each image that correspond to it, and (2) the appearance

of the attribute can change drastically over the attribute spectrum. To address these

challenges, we exploit the fact that for many attributes, the appearance will change

gradually across the attribute spectrum. To this end, we first discover a diverse set

of candidate visual chains, each linking the patches (one from each image) whose

appearance changes smoothly across the attribute spectrum. We then select among

them the most relevant ones that agree with the provided relative attribute annota-

tions.

There are three main steps to our approach: (1) initializing a candidate set of

visual chains; (2) iteratively growing each visual chain along the attribute spectrum;

and (3) ranking the chains according to their relevance to the target attribute to create

an ensemble image representation. In the following, we describe each of these steps

in turn.

3.1 Initializing candidate visual chains

A visual attribute can potentially exhibit large appearance variations across the at-

tribute spectrum. Take the high-at-the-heel attribute as an example: high-heeled

shoes have strong vertical gradients while flat-heeled shoes have strong horizon-

tal gradients. However, the attribute’s appearance will be quite similar in any local

region of the attribute spectrum. Therefore, to capture the attribute across its entire

spectrum, we sort the image collection based on predicted attribute strength (we

elaborate below), and generate candidate visual chains via iterative refinement; i.e.,
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Fig. 3: Our initialization consists of a set of diverse visual chains, each varying smoothly in ap-
pearance.

we start with short but visually homogeneous chains of image regions in a local

region of the attribute spectrum, and smoothly grow them out to cover the entire

spectrum. We generate multiple chains because (1) appearance similarity does not

guarantee relevance to the attribute (e.g., a chain of blank white patches satisfies this

property perfectly but provides no information about the attribute), and (2) some at-

tributes are better described with multiple image regions (e.g., the attribute “eyes

open” may better be described with two patches, one on each eye). We will describe

how to select the relevant ones among the multiple candidate chains in Sec. 3.3.

We start by first sorting the images in S in descending order of predicted at-

tribute strength—with Ĩ1 as the strongest image and ĨN as the weakest—using a

linear SVM-ranker [15] trained with global image features, as in [31]. To initialize

a single chain, we take the top Ninit images and select a set of patches (one from

each image) whose appearance varies smoothly with its neighbors in the chain, by

minimizing the following objective function:

min
P

C(P) =
Ninit

∑
i=2

||φ(Pi)−φ(Pi−1)||2, (1)

where φ(Pi) is the appearance feature of patch Pi in Ĩi, and P = {P1, . . . ,PNinit} is

the set of patches in a chain. Candidate patches for each image are densely sampled

at multiple scales. This objective enforces local smoothness: the appearances of the

patches in the images with neighboring indices should vary smoothly within a chain.

Given the objective’s chain structure, we can efficiently find its global optimum

using Dynamic Programming (DP).

In the backtracking stage of DP, we obtain a large number of K-best solutions. We

then perform a chain-level non-maximum-suppression (NMS) to remove redundant

chains to retain a set of Kinit diverse candidate chains. For NMS, we measure the

distance between two chains as the sum of intersection-over-union scores for every

pair of patches from the same image. This ensures that different initial chains not

only contain different patches from any particular image, but also together spatially

cover as much of each image as possible (see Fig. 3).
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Note that our initialization procedure does not assume any global alignment

across the images. Instead the chain alignment is achieved through appearance

matching by solving Eq. 1.

3.2 Iteratively growing each visual chain

The initial set of Kinit chains are visually homogeneous but cover only a tiny frac-

tion of the attribute spectrum. We next iteratively grow each chain to cover the entire

attribute spectrum by training a model that adapts to the attribute’s smoothly chang-

ing appearance. This idea is related to self-paced learning in the machine learning

literature [22, 1], which has been applied to various computer vision tasks such as

object discovery and tracking [26, 28, 39].

Specifically, for each chain, we iteratively train a detector and in each iteration

use it to grow the chain while simultaneously refining it. To grow the chain, we

again minimize Eqn. 1 but now with an additional term:

min
P

C(P) =
t∗Niter

∑
i=2

||φ(Pi)−φ(Pi−1)||2 −λ
t∗Niter

∑
i=1

wT
t φ(Pi), (2)

where wt is a linear SVM detector learned from the patches in the chain from the

(t−1)-th iteration (for t = 1, we use the initial patches found in Sec. 3.1), P =
{P1, . . . ,Pt∗Niter} is the set of patches in a chain, and Niter is the number of images

considered in each iteration (explained in detail below). As before, the first term

enforces local smoothness. The second term is the detection term: since the ordering

of the images in the chain is only a rough estimate and thus possibly noisy (recall we

computed the ordering using an SVM-ranker trained with global image features), wt
prevents the inference from drifting in the cases where local smoothness does not

strictly hold. λ is a constant that trades-off the two terms. We use the same DP

inference procedure used to optimize Eqn. 1.

Once P is found, we train a new detector with all of its patches as posi-

tive instances. The negative instances consist of randomly sampled patches whose

intersection-over-union scores are lower than 0.3 with any of the patches in P. We

use this new detector wt in the next growing iteration. We repeat the above proce-

dure T times to cover the entire attribute spectrum. Fig. 4 (a) illustrates the process

of iterative chain growing for the “high-at-the-heel” and “smile” attributes. By it-

eratively growing the chain, we are able to coherently connect the attribute despite

large appearance variations across its spectrum. However, there are two important

considerations to make when growing the chain: (1) multimodality of the image

dataset and (2) overfitting of the detector.
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Fig. 4: Top: “high-at-the-heel”; bottom: “smile”. (a) We iteratively grow candidate visual chains
along the direction of decreasing attribute strength, as predicted by the ranker trained with global
image features [31]. (b) Once we obtain an accurate alignment of the attribute across the images,
we can train a new ranker conditioned on the discovered patches to obtain a more accurate image
ordering.

3.2.1 Multimodality of the image dataset

Not all images will exhibit the attribute due to pose/viewpoint changes or occlusion.

We therefore need a mechanism to rule out such irrelevant images. For this, we use

the detector wt . Specifically, we divide the image set S—now ordered in decreasing

attribute strength as {Ĩ1, . . . , ĨN}—into T process sets, each with size N/T . In the

t-th iteration, we fire the detector wt trained from the (t−1)-th iteration across each

image in the t-th process set in a sliding window fashion. We then add the Niter
images with the highest maximum patch detection scores for chain growing in the

next iteration.

3.2.2 Overfitting of the detector

The detector can overfit to the existing chain during iterative growing, which means

that mistakes in the chain may not be fixed. To combat this, we adopt the cross-
validation scheme introduced in [37]. Specifically, we split our image collection S
into S1 and S2, and in each iteration, we run the above procedure first on S1, and

then take the resulting detector and use it to mine the chain in S2. This produces

more coherent chains, and also cleans up any errors introduced in either previous

iterations or during chain initialization.
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3.3 Ranking and creating a chain ensemble

We now have a set of Kinit chains, each pertaining to a unique visual concept and

each covering the entire range of the attribute spectrum. However, some image re-

gions that capture the attribute could have still been missed because they are not

easily detectable on their own (e.g., forehead region for “visible forehead”). Thus,

we next describe a simple and efficient way to further diversify the pool of chains

to increase the chance that such regions are selected. We then describe how to se-

lect the most relevant chains to create an ensemble that together best models the

attribute.

3.3.1 Generating new chains anchored on existing ones

Since the patches in a chain capture the same visual concept across the attribute

spectrum, we can use them as anchors to generate new chains by perturbing the

patches locally in each image with the same perturbation parameters (Δx,Δy,Δs).
More specifically, perturbing a patch centered at (x,y) with size (w,h) using pa-

rameter (Δx,Δy,Δs) leads to a new patch at location (x+Δxw,y+Δyh), with size

(w×Δs,h×Δs) (see Fig. 5). Note that we get the alignment for the patches in the

newly generated chains for free, as they are anchored on an existing chain (given

that the object is not too deformable). We generate Kpert chains for each of the Kinit
chains with Δx and Δy each sampled from [−δxy,δxy] and Δs sampled from a discrete

set χ , which results in Kpert×Kinit chains in total. To detect the visual concept cor-

responding to a perturbed chain on any new unseen image, we take the detector of

the anchoring chain and perturb its detection using the corresponding perturbation

parameters.

3.3.2 Creating a chain ensemble

Different chains characterize different visual concepts. Not all of them are relevant

to the attribute of interest and some are noisy. To select the relevant chains, we rank

all the chains according to their relatedness to the target attribute using the image-

level relative attribute annotations. For this, we split the original training data into

two subsets: one for training and the other for validation. For each of the Kpert×Kinit
candidate chains, we train a linear SVM detector and linear SVM ranker [15, 31].

We then fire the detector on each validation image in a sliding window fashion and

apply the ranker on the patch with the maximum detection score to get an estimated

attribute strength Ω̂(Ii) for each image Ii. Finally, we count how many of the pair-

wise ground-truth attribute orderings agree with our predicted attribute orderings:

acc(R,Ω̂) =
1

|R| ∑
(i, j)∈R

�[Ω̂(Ii)− Ω̂(I j)≥ 0], (3)
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Fig. 5: We generate new chains (blue dashed patches) anchored on existing ones (red solid patches).
Each new chain is sampled at some location and scale relative to the chain anchoring it. This not
only allows us to efficiently generate more chains, but also allows us to capture visual concepts
that are hard to detect in isolation yet still important to model the attribute (e.g., 1st image: the
patch at the top of the head is barely detectable due to its low gradient energy, even though it is
very informative for “Bald head”).

where |R| is the cardinality of the relative attribute annotation set on the validation

data, and �[·] is the indicator function. We rank each chain according to this val-

idation set accuracy, and select the top Kens chains. To form the final image-level

representation for an image, we simply concatenate the feature vectors extracted

from the detected patches, each weighted by its chain’s validation accuracy. We

then train a final linear SVM ranker using this ensemble image-level representation

to model the attribute.

4 Results

In this section, we analyze our method’s discovered spatial extent of relative at-

tributes, pairwise ranking accuracy, and contribution of local smoothness and per-

turbed visual chains.

Implementation details. The feature φ we use for detection and local smoothness

is HOG [11], with size 8×8 and 4 scales (patches ranging from 40×40 to 100×100

of the original image). For ranker learning, we use both the LLC encoding of dense-

SIFT [41] stacked with a two-layer Spatial Pyramid (SP) grid [25], and pool-5 ac-

tivation features from the ImageNet pre-trained CNN (Alexnet architecture) imple-

mented using Caffe [19, 14]. (We find the pool-5 activations, which preserve more

spatial information, to be more useful in our tasks than the fully-connected layers.)

We set λ = 0.05, Ninit = 5, Niter = 80, Kinit = 20, Kpert = 20, Kens = 60, δxy = 0.6,

and χ = {1/4,1}. We find T = 3 iterations to be a good balance between chain

quality and computation.

Baselines. Our main baseline is the method of [31] (Global), which learns a rela-

tive attribute ranker using global features computed over the whole image. We also

compare to the approach of [35] (Keypoints), which learns a ranker with dense-
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SIFT features computed on facial keypoints detected using the supervised detector

of [46], and to the local learning method of [44], which learns a ranker using only

the training samples that are close to a given testing sample. For Global [31], we use

the authors’ code with the same features as our approach (dense-SIFT+LLC+SP and

pool-5 CNN features). For Keypoints [35] and [44], we compare to their reported

numbers computed using dense-SIFT and GIST+color-histogram features, respec-

tively.

Datasets. LFW-10 [35] is a subset of the Labeled faces in the wild (LFW) dataset.

It consists of 2000 images: 1000 for training and 1000 for testing. Annotations are

available for 10 attributes, with 500 training and testing pairs per attribute. The

attributes are listed in Table 1.

UT-Zap50K [44] is a large collection of 50025 shoe images. We use the UT-Zap50K-

1 annotation set, which provides on average 1388 training and 300 testing pairs of

relative attribute annotations for each of 4 attributes: “Open”, “Sporty”, “Pointy”,

and “Comfort”.

Shoes-with-Attributes [18] contains 14658 shoe images from like.com and 10 at-

tributes, of which 3 are overlapping with UT-Zap50K: “Open”, “Sporty”, and

“Pointy”. Because each attribute has only about 140 pairs of relative attribute an-

notations, we use this dataset only to evaluate cross-dataset generalization perfor-

mance in Sec. 4.3.

4.1 Visualization of discovered visual chains

We first visualize our discovered visual chains for each attribute in LFW-10 and UT-

Zap50k. In Fig. 6, we show the single top-ranked visual chain, as measured by rank-

ing accuracy on the validation set (see Eqn. 3), for each attribute. We uniformly sam-

ple and order nine images according to their predicted attribute strength using the

ranker trained on the discovered image patches in the chain. Our chains are visually-

coherent, even when the appearance of the underlying visual concept changes dras-

tically over the attribute spectrum. For example, for the attribute “Open” in UT-

Zap50k, the top-ranked visual chain consistently captures the opening of the shoe,

even though the appearance of that shoe part changes significantly across the at-

tribute spectrum. Due to our precise localization of the attribute, we are able to

learn an accurate ordering of the images. While here we only display the top-ranked

visual chain for each attribute, our final ensemble image-representation combines

the localizations of the top-60 ranked chains to discover the full spatial extent of the

attribute, as we show in the next section.
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Fig. 6: Top ranked visual chain for each attribute in LFW-10 (top) and UT-Zap50K (bottom). All
images are ordered according to the predicted attribute strength using the ranker trained on the
discovered image patches in the chain.
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Fig. 7: (left) Detection boxes of the top-60 ranked visual chains for “Smile”, using each of their
associated detectors. (right) The validation score (see Eq. 3) of each visual chain is overlaid onto
the detected box in the image and summed to create the visualization of the discovered spatial
extent of the attribute.

4.2 Visualization of discovered spatial extent

We next show qualitative results of our approach’s discovered spatial extent for each

attribute in LFW-10 and UT-Zap50K. For each image, we use a heatmap to display

the final discovered spatial extent, where red/blue indicates strong/weak attribute

relevance. To create the heatmap, the spatial region for each visual chain is overlaid

by its predicted attribute relevance (as described in Sec. 3.3), and then summed

up (see Fig. 7). Fig. 8 shows the resulting heatmaps on a uniformly sampled set

of unseen test images per attribute, sorted according to predicted attribute strength

using our final ensemble representation model.

Clearly, our approach has understood where in the image to look to find the at-

tribute. For almost all attributes, our approach correctly discovers the relevant spa-

tial extent (e.g., for localizable attributes like “Mouth open”, “Eyes open”, “Dark

hair”, and “Open”, it discovers the corresponding object-part). Since our approach

is data-driven, it can sometimes go beyond common human perception to discover

non-trivial relationships: for “Pointy”, it discovers not only the toe of the shoe, but

also the heel, because pointy shoes are often high-heeled (i.e., the signals are highly

correlated). For “Comfort”, it has discovered that the lack or presence of heels can

be an indication of how comfortable a shoe is. Each attribute’s precisely discovered

spatial extent also leads to an accurate image ordering by our ensemble representa-

tion ranker (Fig. 8 rows are sorted by predicted attribute strength). There are limita-

tions as well, especially for atypical images: e.g., “Smile” (6th image) and “Visible

forehead” (8th image) are incorrect due to mis-detections resulting from extreme

pose/clutter. Finally, while the qualitative results are harder to interpret for the more

global attributes like “Good looking” and “Masculine looking”, we demonstrate

through quantitative analyses in Sec. 4.4.3 that they occupy a larger spatial extent

than the more localizable attributes like “Mouth open” and “Smile”. Since the spatial
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Fig. 8: Qualitative results showing our discovered spatial extent and ranking of relative attributes on
LFW-10 (top) and UT-Zap50K (bottom). We visualize our discoveries as heatmaps, where red/blue
indicates strong/weak predicted attribute relevance. For most attributes, our method correctly dis-
covers the relevant spatial extent (e.g., for “Mouth open”, “Dark hair”, and “Eyes open”, it dis-
covers the corresponding object-part), which leads to accurate attribute orderings. Our approach
is sometimes able to discover what may not be immediately obvious to humans: for “Pointy”, it
discovers not only the toe of the shoe, but also the heel, because pointy shoes are often high-heeled
(i.e., the signals are highly correlated). There are limitations as well, especially for atypical images:
e.g., “Smile” (6th image) and “Visible forehead” (8th image) are incorrect due to mis-detections
resulting from extreme pose or clutter. Best viewed on pdf.
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Visible teeth

Dark hair

Ours Spatial pyramid

Fig. 9: Spatial extent of attributes discovered by our approach vs. a spatial pyramid baseline.
Red/blue indicates strong/weak attribute relevance. Spatial pyramid uses a fixed rigid grid (here
20x20), and so cannot deal with translation and scale changes of the attribute across images. Our
approach is translation and scale invariant, and so its discoveries are much more precise.

extent of the global attributes is more spread out, the highest-ranked visual chains

tend to overlap most at the image centers as reflected by the heatmaps.

In Fig. 9, we compare against the Global baseline. We purposely use a higher

spatial resolution (20x20) grid for the baseline to make the visualization comparison

fair. Since the baseline uses a fixed spatial pyramid rigid grid, it cannot deal with

changes in translation or scale of the attribute across different images; it discovers

the background clutter to be relevant to “Dark hair” (1st row, 3rd column) and the

nose region to be relevant to “Visible teeth” (2nd row, 4th column). Our approach is

translation and scale invariant, and hence its discoveries are much more precise.

4.3 Relative attribute ranking accuracy

We next evaluate relative attribute ranking accuracy, as measured by the percentage

of test image pairs whose pairwise orderings are correctly predicted (see Eqn. 3).

We first report results on LFW-10 (Table 1). We use the same train/test split as

in [35], and compare to the Global [31] and Keypoints [35] baselines. Our approach

consistently outperforms the baselines for both feature types. Notably, even with

the weaker dense-SIFT features, our method outperforms Global [31] that uses the

more powerful CNN features for all attributes except “Masculine-looking”, which

may be better described with a global feature1. This result demonstrates the im-

portance of accurately discovering the spatial extent for relative attribute modeling.

Compared to Keypoints [35], which also argues for the value of localization, our

approach performs better but with less supervision; we do not use any facial land-

mark annotations during training. This is likely due to our approach being able to

1 Technically our approach is able to discover relevant regions with arbitrary sizes. However, in
practice we are limited by a fixed set of box sizes that we use for chain discovery.
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BH DH EO GL ML MO S VT VF Y Mean

Keypoints [35]+DSIFT 82.04 80.56 83.52 68.98 90.94 82.04 85.01 82.63 83.52 71.36 81.06

Global [31]+DSIFT 68.98 73.89 59.40 62.23 87.93 57.05 65.82 58.77 71.48 66.74 67.23

Ours+DSIFT 78.47 84.57 84.21 71.21 90.80 86.24 83.90 87.38 83.98 75.48 82.62
Global [31]+CNN 78.10 83.09 71.43 68.73 95.40 65.77 63.84 66.46 81.25 72.07 74.61

Ours+CNN 83.21 88.13 82.71 72.76 93.68 88.26 86.16 86.46 90.23 75.05 84.66

Table 1: Attribute ranking accuracy (%) on LFW-10. Our approach outperforms the baselines for
both dense-SIFT (first 3 rows) and CNN (last 2 rows) features. In particular, the largest perfor-
mance gap between our approach and the Global [31] baseline occurs for attributes with localiz-
able nature, e.g., “Mouth open”. Using the same dense-SIFT features, our approach outperforms
the Keypoints [35] baseline on 7 of 10 attributes but with less supervision; we do not use any facial
landmark annotations for training. BH–Bald head; DH–Dark hair; EO–Eyes open; GL–Good look-
ing; ML–Masculine looking; MO–Mouth open; S–Smile; VT–Visible teeth; VF–Visible forehead;
Y–Young.

Open Pointy Sporty Comfort Mean

Yu and Grauman [44] 90.67 90.83 92.67 92.37 91.64

Global [31]+DSIFT 93.07 92.37 94.50 94.53 93.62

Ours+DSIFT 92.53 93.97 95.17 94.23 93.97

Ours+Global+DSIFT 93.57 93.83 95.53 94.87 94.45
Global [31]+CNN 94.37 93.97 95.40 95.03 94.69

Ours+CNN 93.80 94.00 96.37 95.17 94.83

Ours+Global+CNN 95.03 94.80 96.47 95.60 95.47

Table 2: Attribute ranking accuracy (%) on UT-Zap50K. Even though our approach outperforms
the baselines, the performance gap is not as large as on the LFW-10 dataset, mainly because the
images in this dataset are much more spatially-aligned. Thus, Global [31] is sufficient to do well on
this dataset. We perform another cross-dataset experiment to address this dataset bias, the results
of which can be found in Table 3.

discover regions beyond pre-defined facial landmarks, which may not be sufficient

in modeling the attributes.

We also report ranking accuracy on UT-Zap50K (Table 2). We use the same

train/test splits as in [44], and compare again to Global [31], as well as to the local

learning method of [44]. Note that Keypoints [35] cannot be easily applied to this

dataset since it makes use of pre-trained landmark detectors, which are not available

(and much more difficult to define) for shoes. While our approach produces the high-

est mean accuracy, the performance gain over the baselines is not as significant com-

pared to LFW-10. This is mainly because all of the shoe images in this dataset have

similar scale, are centered on a clear white background, and face the same direction.

Since the objects are so well-aligned, a spatial pyramid is enough to capture detailed

spatial alignment. Indeed, concatenating the global spatial pyramid feature with our

discovered features produces even better results (Ours+Global+DSIFT/CNN).2

2 Doing the same on LFW-10 produces worse results since the images are not as well-aligned.
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Open Pointy Sporty Mean

Global [31]+DSIFT 55.73 50.00 47.71 51.15

Ours+DSIFT 63.36 62.50 55.96 60.61
Global [31]+CNN 77.10 72.50 71.56 73.72

Ours+CNN 80.15 82.50 88.07 83.58

Table 3: Cross-dataset ranking accuracy (%), training on UT-Zap50K and testing on Shoes-with-
Attributes. Our approach outperforms Global [31] with a large margin in this setting (∼10%
points), since our approach is both translation and scale invariant.

Finally, we conduct a cross-dataset generalization experiment to demonstrate that

our method is more robust to dataset bias [40] compared to Global [31]. We take the

detectors and rankers trained on UT-Zap50K, and use them to make predictions on

Shoes-with-Attributes. Table 3 shows the results. The performance for both methods

is much lower because this dataset exhibits shoes with very different styles and much

wider variation in scale and orientation. Still, our method generalizes much better

than Global [31] due to its translation and scale invariance.

4.4 Ablation studies

In this section, we perform ablation studies to analyze the different components of

our approach, and perform additional experiments to further analyze the quality of

our method’s discoveries and how they relate to human annotations.

4.4.1 Contribution of each term in Eqn. 2

We conduct an ablation study comparing our chains with those mined by two base-

lines that use either only the detection term or only the local smoothness term in

Eqn. 2. For each attribute in LFW-10 and UT-Zap50K, we select the single top-

ranked visual chain. We then take the same Ninit initial patches for each chain, and

re-do the iterative chain growing, but without the detection or smoothness term.

Algorithmically, the detection-only baseline is similar to the style-aware mid-level

visual element mining approach of [26].

We then ask a human annotator to mark the outlier detections that do not visually

agree with the majority detections, for both our chains and the baselines’. On a total

of 14 visual chains across the two datasets, on average, our approach produces 3.64

outliers per chain while the detection-only and smoothness-only baselines produce

5 and 76.3 outliers, respectively. The smoothness-only baseline often drifts during

chain growing to develop multiple modes. Fig. 10 contrasts the detection-only base-

line with ours.
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Detection only Detection and smoothness (Ours)

Mouth 
open

Good 
looking

Fig. 10: Three consecutive patches in two different visual chains, for “Mouth open” and “Good
looking”. (left) The middle patches are mis-localized due to the confusing patterns at the incorrect
locations. (right) These errors are corrected by propagating information from neighbors when local
smoothness is considered.

4.4.2 Visual chain perturbations

As argued in Sec. 3.3, generating additional chains by perturbing the originally

mined visual chains is not only an efficient way of increasing the size of the can-

didate chain pool, but also allows the discovery of non-distinctive regions that are

hard to localize but potentially informative to the attribute. Indeed, we find that for

each attribute, on average only 4.25 and 2.3 selected in the final 60-chain ensemble

are the original mined chains, for UT-Zap50K and LFW-10, respectively. For exam-

ple, in Fig. 8 “Open”, the high response on the shoe opening is due to the perturbed

chains being anchored on more consistent shoe parts such as the tongue and heel.

4.4.3 Spreadness of subjective attributes

Since the qualitative results (Fig. 8) of the more global attributes are harder to in-

terpret, we next conduct a quantitative analysis to measure the spreadness of our

discovered chains. Specifically, for each image, we compute a spreadness score:

(# of unique pixels covered by all chains)/(# of pixels in image), and then average

this score over all images for each attribute. We find that the global attributes like

good looking, young and masculine looking have higher spreadness than local ones

like mouth open, eyes open and smile.

4.4.4 Where in the image do humans look to find the attribute?

This experiment tries to answer the above question by analyzing the human annota-

tor rationales provided with the UT-Zap50k dataset. We take “comfort” as our test

attribute since its qualitative results in Fig. 8 are not as interpretable at first glance.

Specifically, we count all noun and adjective word occurrences for the 4970 anno-
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tator rationales provided for “comfort”, using the Python Natural Language Toolkit

(NLTK) part-of-speech tagger. The following are the resulting top-10 word counts:

shoe-595, comfortable-587, sole-208, material-205, b-195 heel-184, support-176,

foot-154, flexible-140, soft-92. Words like sole, heel and support are all related to

heels, which supports the discoveries of our method.

4.5 Limitations

While the algorithm described in this chapter is quite robust as we have shown in

the above experiments, it is not without limitations. Since our approach makes the

assumption that the visual properties of an attribute change gradually with respect

to attribute strength, it also implicitly assumes the existence of the same visual con-
cept across the attribute spectrum. For example, for the attributes that we study in

this chapter, our approach assumes that all images contain either faces or shoes re-

gardless of the strength of the attribute. However, it would be difficult to apply our

approach to datasets that do not hold this property, like natural scene images. This

is because for an attribute like “natural”, there are various visual properties (like

forests and mountains, etc.) that are relevant to the attribute but are not consistently

present across different images. Therefore, it would be much more challenging to

discover visual chains that have the same visual concept whose appearance changes

gradually according to attribute strength to link the images together.

Another limitation comes from our approach’s dependency on the initial ranking.

A rough initial ranking is required for the local smoothness property to hold in

the first place. This may not always be the case if the task is too difficult for a

global ranker to learn in the beginning (e.g., a dataset that contain highly cluttered

images). One potential solution in that case would be to first group the training

images into visually similar clusters and then train global rankers within each cluster

to reduce the difficulty of ranker learning. The images in each cluster would be

ordered according to the corresponding global ranker for initialization, and the rest

of our algorithm would remain the same.

4.6 Application: Attribute Editor

Finally, we introduce an interesting application of our approach called the Attribute
Editor, which could potentially be used by designers. The idea is to synthesize a

new image, say of a shoe, by editing an attribute to have stronger/weaker strength.

This allows the user to visualize the same shoe but e.g., with a pointier toe or sportier

look. Fig. 11 shows examples, for each of 4 attributes in UT-Zap50k, in which a user

has edited the query image (shown in the middle column) to synthesize new images

that have varying attribute strengths. To do this, we take the highest-ranked visual

chain for the attribute, and replace the corresponding patch in the query image with a
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Predicted attribute strength

strong weak

Pointy

Sporty

Open

Comfort

Fig. 11: The middle column shows the query image whose attribute (automatically localized in red
box) we want to edit. We synthesize new shoes of varying predicted attribute strengths by replacing
the red box, which is predicted to be highly-relevant to the attribute, while keeping the rest of the
query image fixed.

patch from a different image that has a stronger/weaker predicted attribute strength.

For color compatibility, we retrieve only those patches that have similar color along

its boundary as that of the query patch. We then blend in the retrieved patch using

poisson blending. The editing results for the “smile” attribute are shown in Fig. 12.

Our application is similar to the 3D model editor of [5], which changes only

the object-parts that are related to the attribute and keeps the remaining parts fixed.

However, the relevant parts in [5] are determined manually, whereas our algorithm

discovers them automatically. Our application is also related to the Transient At-
tributes work of [23], which changes the appearance of an image globally (without

localization like ours) according to attribute strength.

5 Conclusion

We presented an approach that discovers the spatial extent of relative attributes. It

uses a novel formulation that combines a detector with local smoothness to dis-

cover chains of visually coherent patches, efficiently generates additional candidate

chains, and ranks each chain according to its relevance to the attribute. We demon-

strated our method’s effectiveness on several datasets, and showed that it better mod-
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Predicted attribute strength for Smile 
strong weak 

Fig. 12: Our attribute editor for “Smile”. For the same person, the images from left to right become
less and less smiling.

els relative attributes than baselines that either use global appearance features or

stronger supervision.
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