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Abstract. We propose an end-to-end deep convolutional network to
simultaneously localize and rank relative visual attributes, given only
weakly-supervised pairwise image comparisons. Unlike previous meth-
ods, our network jointly learns the attribute’s features, localization, and
ranker. The localization module of our network discovers the most infor-
mative image region for the attribute, which is then used by the ranking
module to learn a ranking model of the attribute. Our end-to-end frame-
work also significantly speeds up processing and is much faster than
previous methods. We show state-of-the-art ranking results on various
relative attribute datasets, and our qualitative localization results clearly
demonstrate our network’s ability to learn meaningful image patches.
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1 Introduction

Visual attributes are mid-level representations that describe semantic properties
(e.g., ‘furry’, ‘natural’, ‘short’) of objects and scenes, and have been explored
extensively for various applications including zero-shot learning [1–3], image re-
trieval [4–6], fine-grained recognition [7–9], and human computer interaction [10].
Attributes have been studied in the binary [7, 11]—describing their presence or
absence—and relative [3, 12]—describing their relative strength—settings.

Recent work on visual attributes have shown that local representations often
lead to better performance compared to global representations [11, 9, 13]. These
methods use pre-trained part detectors to bring the candidate object parts into
correspondence to model the attribute, with the assumption that there is at least
one well-defined part that corresponds to the attribute. However, this assumption
does not always hold; for example, the exact spatial extent of the attribute bald
head can be ambiguous, which means that training a bald head detector itself
can be difficult. Furthermore, since the part detectors are trained independently
of the attribute, their learned parts may not necessarily be useful for modeling
the attribute. Finally, these methods are designed for binary attributes and
are not applicable for relative attributes; however, relative attributes have been
shown to be equally or more useful in many settings [3, 12].

Recently, Xiao and Lee [14] proposed an algorithm that overcomes the above
drawbacks by automatically discovering the relevant spatial extent of relative
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Fig. 1. Given pairwise relative attribute strength comparisons (i.e., greater/less than
(left) or similar (right)), our goal is to automatically localize the most informative
image regions corresponding to the visual attribute. For example, the mouth region
is the most informative for the attribute smile. To this end, we train an end-to-end
network that discovers the image regions and uses them for relative attribute ranking.

attributes given only weakly-supervised (i.e., image-level) pairwise comparisons.
The key idea is to transitively connect “visual chains” that localize the same
visual concept (e.g., object part) across the attribute spectrum, and then to select
the chains that together best model the attribute. The approach produces state-
of-the-art performance for relative attribute ranking. Despite these qualities, it
has three main limitations due to its pipeline nature: 1) The various components
of the approach, including the feature learning and ranker, are not optimized
jointly, which can lead to sub-optimal performance; 2) It is slow due to time-
consuming intermediate modules of the pipeline; 3) In order to build the visual
chains, the approach assumes the existence of a visual concept that undergoes
a gradual visual change along with the change in attribute strength; however,
this does not always hold. For example, for the natural attribute for outdoor
scenes, there are various visual concepts (e.g., forests and mountains) that are
relevant but not consistently present across the images.

To address these issues, in this paper, we propose an end-to-end deep con-
volutional network that simultaneously learns to rank and localize relative at-
tributes. Our setting is the same as in [14]: we are given only weakly-supervised
image-level pairwise attribute comparisons, but no supervision on where in each
image the attribute is present nor what the attribute looks like. Thus, the main
challenge is to automatically localize the relevant regions in each image pair si-
multaneously, such that an accurate relative ranking of the attribute for each
image pair can be produced. We tackle this challenge by designing a new ar-
chitecture that combines a localization network with a ranking network, and
optimize a pairwise image ranking loss. In this way, our approach learns to focus
on the regions in each image that are optimal for attribute ranking. Furthermore,
our network is optimized end-to-end, and jointly learns an attribute’s features,
localization, and ranker, which mutually benefit each other. This end-to-end
framework also significantly speeds up processing. Finally, unlike [14], we do not
assume that the attribute must be conditioned on the same visual concept across
the attribute spectrum. Instead, our network is free to identify discriminative
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patterns in each image that are most relevant for attribute ranking (e.g., for
the natural attribute, localizing trees for forest images and buildings for city
images). We demonstrate that all of these lead to improved performance over
standard pipeline approaches.

Briefly, our method works as follows: we train a Siamese network [15] with
a pairwise ranking loss, which takes as input a pair of images and a weak-label
that compares the relative strength of an attribute for the image pair. A Siamese
network consists of two identical parallel branches with shared parameters, and
during testing, either branch can be used to assign a ranking score to a single
image. Each branch consists of a localization module and a ranking module.
The localization module is modeled with spatial transformer [16] layers, which
discover the most relevant part of the image corresponding to the attribute (see
Fig. 1 for examples of localized patches). The output patch of the localization
module is then fed into the ranking module for fine-grained attention for ranking.

Contributions. To our knowledge, this is the first attempt to learn an end-
to-end network to rank and localize relative attributes. To accomplish this, we
make two main contributions: (1) a new deep convolutional network that learns
to rank attributes given pairwise relative comparisons, and (2) integrating the
spatial transformer into our network to discover the image patches that are most
relevant to an attribute. We demonstrate state-of-the-art results on the LFW-
10 [13] face, UT-Zap50K [17] shoe, and OSR [18] outdoor scene datasets.

2 Related Work

Visual attributes. Visual attributes serve as an informative and compact rep-
resentation for visual data. Earlier work relied on hand-crafted features like
SIFT and HOG to model the attributes [2, 19, 20, 1, 21, 3, 22, 23, 6]. More recent
work use deep convolutional networks to learn the attribute representations, and
achieve superior performance [24, 25, 9, 26]. While these approaches learn deep
representations for binary attributes, we instead learn deep representations for
relative attributes. Concurrent work [27] also trains a deep CNN for the relative
setting; however, it does not perform localization as we do.

Attribute localization. Learning attribute models conditioned on local
object parts or keypoints have shown to produce superior performance for vari-
ous recognition tasks [28, 11, 8, 13, 9, 14]. Most existing work rely on pre-trained
part/keypoint detectors or crowd-sourcing to localize the attributes [28, 20, 11,
29, 9, 8]. Recently, Xiao and Lee [14] proposed a method to automatically dis-
cover the spatial extent of relative attributes. Since it does not rely on pre-
trained detectors, it can model attributes that are not clearly tied to object-
parts (e.g., open for shoes). However, the approach consists of several sequen-
tial independently-optimized modules in a pipeline system. As a result, it can be
suboptimal and slow. In contrast, we propose to localize the attributes and train
the attribute models simultaneously in an end-to-end learning framework. Sim-
ilar to [14], our approach automatically discovers the relevant attribute regions,
but is more accurate in ranking and faster since everything is learned jointly.
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Attention modeling. Attention models selectively attend to informative
locations in the visual data to process at higher resolution. The key idea is to
neglect irrelevant regions (like background clutter) and instead focus on the im-
portant regions that are relevant to the task at hand. Earlier work on bottom-up
saliency (e.g., [30, 31]) focus on interesting regions in the image, while high-level
object proposal methods (e.g., [32–35]) generate candidate object-like regions.
Recent work use deep networks for attention modeling in various tasks includ-
ing fine-grained classification [36, 37], image caption generation [38], and image
generation [39, 40]. In particular, Spatial Transformer Networks [16] spatially
transform the input image to focus on the task-relevant regions, and have shown
to improve performance on digit and fine-grained bird recognition. In our work,
we show how to integrate spatial transformer layers into a deep pairwise ranking
network in order to automatically localize and rank relative attributes for faces,
shoes, and outdoor scenes, in the more challenging ranking setting.

3 Approach

Given pairs of training images, with each pair ordered according to relative
strength of an attribute, our goal is to train a deep convolutional network that
learns a function f : RM → R to simultaneously discover where in each image the
attribute is present and rank each image (with M pixels) according to predicted
attribute strength. Importantly, the only supervision we have are the pairwise
image comparisons; i.e., there is no supervision on where in each image the
attribute is present nor prior information about the visual appearance of the
attribute.

3.1 Input

For training, the input to our network is an image pair (I1, I2) and a correspond-
ing label L for a given attribute (e.g., smile) indicating whether the image
pair belongs to set E or Q. (I1, I2)∈E means that the ground-truth attribute
strengths of I1 and I2 are similar to each other, while (I1, I2)∈Q means that
the ground-truth attribute strength of I1 is greater than that of I2. (If attribute
strength of I1 is less than that of I2, we simply reorder the two as (I2, I1)∈Q.)

For testing, the input is a single image Itest, and our network uses its learned
function f (i.e., network weights) to predict the attribute strength v = f(Itest).

3.2 Architecture

Fig. 2 shows the overall architecture of our network. We have a Siamese net-
work [41], which takes as input an image pair (I1, I2) along with its label L,
and outputs two scalar values v1 = f(I1) and v2 = f(I2), which are fed into
our loss function. A Siamese network consists of two identical branches S1 and
S2 with shared parameters. Each branch consists of a Spatial Transformer
Network (STN) and a Ranker Network (RN). The STN is responsible for
localizing the relevant image patch corresponding to the visual attribute, while
the RN is responsible for generating a scalar value v that denotes the input
image’s attribute strength. During testing, only one of the branches is used to
produce the attribute strength v for the input test image.
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Fig. 2. Overall architecture of our network. It takes as input a pair of images (I1, I2)
and a label denoting the images’ relative ordering according to ground-truth attribute
strength (here, I1 is more smiling than I2). Each image is fed into a Siamese network,
which consists of a Spatial Transformer Network (STN) and a Ranker Network (RN).
The Siamese networks output the predicted attribute scores v1 and v2 for the images,
which are used by the loss function to update the network’s parameters.

Spatial Transformer Network (STN) Intuitively, in order to discover the
regions in each training image pair that are relevant to the attribute, we could
apply a ranking function to various pairs of regions (one region from each image
in the pair), and then select the pair that leads to the best agreement with the
ground-truth pairwise rankings. STNs [16] provide an elegant framework for do-
ing so. An STN learns an explicit spatial image (or feature map) transformation
for each image that is optimal for the task at hand [16]. It has two main ad-
vantages: (1) fully-differentiable and can be trained with backpropagation; and
(2) can learn to translate, crop, rotate, scale, or warp an image without any
explicit supervision for the transformation. By attending to the most relevant
image regions, the STN allows the ensuing computation to be dedicated to those
regions. In [16], STNs were shown to learn meaningful transformations for digit
classification and fine-grained bird classification.

In this work, we incorporate an STN as part of our end-to-end ranking sys-
tem, in order to discover the region-of-interest for each relative attribute. The
STN’s output can then be fed into the ensuing Ranker network, easing its task.
For example, for attribute visible-teeth, it will be easier to optimize the
ranking function if the Ranker network receives the mouth region. While there is
no explicit human supervision denoting that the mouth is in fact the most rele-
vant for visible-teeth, the STN can learn to attend to it via its contribution
to the ranking loss function. The architecture of an STN has three main blocks
(see Fig. 3, orange box): it first takes the input image and passes it through a
convolutional network to obtain the transformation parameters θ, and then a
grid generator creates a sampling grid, which provides the set of input points
that should be sampled to produce the transformed output. With the generated
grid and the transformation parameters θ, a bilinear interpolation kernel is ap-
plied to sample the input values to produce the output image. See [16] for more
details.
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Fig. 3. Illustration of one Siamese network branch. The input image I goes through
the spatial transformer network (STN), which generates the transformation parame-
ters θ. The transformation is applied to image I to localize the most relevant region
corresponding to the attribute. In this example, the attribute is smile, so the STN
localizes the mouth. Next, the ranker network computes and combines the features of
the STN output and image I to compute the attribute strength v.

In our STN, we have three transformation parameters θ = [s, tx, ty], repre-
senting isotropic scaling s and horizontal and vertical translation tx and ty.1 The
transformation is applied as an inverse warp to generate the output image:(

xini
yini

)
=

[
s 0 tx
0 s ty

]xouti

youti

1

 , (1)

where xini and yini are the input image coordinates, xouti and youti are the output
image coordinates, and i indexes the pixels in the output image.

The convolutional network of our STN has six convolutional layers and two
fully-connected layers (see Fig. 3, orange box). The first five layers are equivalent
to those of AlexNet [42]. After the max-pooling layer of the 5th convolutional
layer (i.e., pool5), we add a convolutional layer consisting of 128 filters of size
1×1 to reduce feature dimensionality. After the convolutional layer, we add two
fully-connected layers; the first takes in 4608 values as input and outputs 128
values, while the second takes the 128 values as input and outputs the final 3
transformation parameters (i.e., scale, vertical and horizontal translation). We
find these hyperparmeters to provide a good balance of high enough capacity to
learn the transformation while minimizing overfitting.

Fig. 4 shows the change in the STN output over the training epochs of our
network. For each attribute, the first row shows an example image with the STN’s
localized patch in the red box, while the second row shows the distribution of the
STN’s output over the entire training data overlaid onto the example image (this
visualization works because the face images in LFW-10 are roughly aligned).
The STN is initially unsure of the attribute’s location and thus has high spatial
variance. It then proceeds to search over the various regions in each image and
converges to the top of the head for dark-hair and to the mouth for smile.

Ranker Network (RN) The RN takes the output of the STN (i.e., an image
patch) and the original image as input, and computes and combines their features

1 More complex transformations (e.g., affine, thin plate spline) are possible, but we
find this transformation to be sufficient for our datasets.
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Fig. 4. The localization behavior of the STN during training of our network. For each
attribute, the first row shows the output of the STN for the same image across different
training epochs. The second row shows the distribution of the STN outputs for all
the training images across different training epochs (we overlay the heatmap onto
an example image). Notice how the STN output initially has high variance but then
gradually converges to the top of the head for dark-hair and the mouth for smile.

to generate a scalar attribute strength v as output (see Fig. 3, blue box). The
key idea of combining the two inputs is to provide the ranker with both the
high-resolution image patch that is focused on the visual attribute as well as the
entire image to provide global context. We demonstrate in our experiments that
the two sources of information are indeed complementary.

For image pair (I1, I2)∈E, the RN will learn to generate similar values for I1
and I2, while for image pair (I1, I2)∈Q the RN will learn to generate a higher
value for I1 than I2. Ultimately, the RN will learn a global ranking function
that tries to satisfy all such pairwise constraints in the training data. Our RN
is a Siamese network [41], with each branch consisting of AlexNet [42] without
the last fully connected classification layer (i.e., all layers up through fc7). This
generates 4096-D feature vectors for both the image patch and global image,
which are concatenated to produce the final 8192-D feature. A linear layer takes
the 8192-D feature to generate a final single value v for the image. Note that each
branch of the RN has shared weights, which reduces the number of parameters
by half and helps in reducing overfitting.

3.3 Localization and Ranking Loss Function

To learn the parameters of our network, we train it using the loss function
introduced in the seminal work of RankNet [43]. Specifically, we map the outputs
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v1 and v2 (corresponding to I1 and I2), to a probability P via a logistic function
P = e(v1−v2)/(1 + e(v1−v2)), and then optimize the standard cross-entropy loss:

Rankloss(I1, I2) = −L · log(P )− (1− L) · log(1− P ), (2)

where if (I1, I2)∈Q then L = 1, else if (I1, I2)∈E then L = 0.5. This loss function
enforces v1 > v2 when I1 has a higher ground-truth attribute strength than
I2, and enforces v1 = v2 when I1 and I2 have similar ground-truth attribute
strengths. As described in [43], a nice property of this loss function is that it
asymptotes to a linear function, which makes it more robust to noise compared to
a quadratic function, and handles input pairs with similar ground-truth attribute
strengths in a principled manner as it becomes symmetric with minimum value
at 0 when L = 0.5.

In our initial experiments, we found that large magnitudes for the translation
parameters of the STN can lead to its output patch going beyond the input
image’s boundaries (resulting in a black patch with all 0-valued pixels). One
reason for this is because for any similar pair (I1, I2)∈E, its ranking loss can be
minimized when the STN produces identical patches for both I1 and I2. This
makes learning difficult because the resulting gradient direction of the ranking
loss with respect to the transformation parameters becomes uninformative, since
the same black patch will be produced in all nearby spatial directions. To handle
this, we introduce a simple loss that updates the transformation parameters to
bring the STN’s output patch back within the image boundaries if it goes outside:

STloss(I) = (Cx − s · tx)2 + (Cy − s · ty)2, (3)

where tx and ty are horizontal and vertical translation, respectively, s is isotropic
scaling, and Cx and Cy are the center x and y pixel-coordinates of the input
image I, respectively. STloss is simply the squared distance of the center coor-
dinates of the output patch from the input image’s center, and is differentiable.
The loss increases as (s · tx, s · ty) moves farther away from the image center, so
the output patch will be forced to move back toward the image. Importantly,
we do not apply this loss if the output patch’s center coordinates are within the
image’s boundaries (i.e., this loss does not bias the STN to produce regions that
are near the image center).

Putting Eqns. 2 and 3 together, our final loss function is:

Loss =
1

N

∑
i

(1−λi1)(1−λi2)·Rankloss(Ii1, Ii2)+λi1·STloss(Ii1)+λi2·STloss(Ii2), (4)

where N is the total number of training image pairs, i indexes over the training
pairs, λi1=1 (λi2=1) if the center coordinates of the STN’s output patch of Ii1 (Ii2)
falls outside of the image’s boundaries. We optimize Eqn. 4 with backpropagation
to learn the entire network’s weights f . Note that the gradient computed for
STloss is only backpropagated through the STN and does not affect the RN. If
both λi1=λi2=0 (the STN’s output patches for both Ii1 and Ii2 are within their
image boundaries), then the gradient computed for Rankloss is backpropagated
through the entire network (i.e., both the RN and STN are updated).
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4 Results

In this section, we analyze our network’s attribute localization and ranking ac-
curacy through both qualitative and quantitative results.

Datasets. LFW-10 [13]: It consists of 10 face attributes (bald-head, dark-
hair, eyes-open, good-looking, masculine-looking, mouth-open,
smile, visible-teeth, visible-forehead, and young). There are 1000
training images and 1000 test images, with 500 pairs per attribute for both
training and testing. We use the same train-test split used in [13].

UT-Zap50K-1 [17]: It consists of 4 shoe attributes (open, pointy, sporty
and comfort). There are 50,025 shoe images, and 1388 training and 300 testing
pairs per attribute. We use the train-test splits provided by [17].

OSR [18]: It consists of outdoor scene attributes (natural, open, per-
spective, large-objects, diagonal-plane, and close-depth). There
are 2688 images, and we use the same train/test split as in [3, 17].

Implementation details. We train a separate network for each visual at-
tribute. We initialize the STN and RN weights with those of AlexNet [42] pre-
trained on ImageNet classification up through conv5 and fc7, respectively. We
first train our network without the global image; i.e., the RN only receives the
output of the STN to generate the attribute score v. We then retrain the entire
network—in which we use both the STN output and the global image to train
the RN—with the STN weights initialized with the initially learned weights. We
find that this setup helps the STN localize the attribute more accurately, since
initially the STN is forced to find the optimal image region without being able
to rely on the global image when predicting the attribute strength.

For training, we use a mini-batch size of 25 image pairs for SGD, and train
the network for 400, 200, and 15 epochs for LFW-10, UT-Zap50K, and OSR,
respectively. We set the learning rate for the RN and STN to be 0.001 and 0.0001,
respectively, and fix momentum to 0.9. Also, we set the relative learning rate
for the scale parameter to be one-tenth of that of the translation parameters,
as we find scaling to be more sensitive and can transform the image drastically.
We initialize the scale to be 1/3 of the image size for LFW-10 and 1/2 for
UT-Zap50K and OSR, based on initial qualitative observations. Translation is
initialized randomly for all datasets. We use random crops of size 227×227 from
our 256 × 256 input image during training, and average the scores for 10 crops
(4 corners plus center, and same with horizontal flip) during testing.

Baselines. We compare against the state-of-the art method of Xiao and Lee [14],
which uses a pipeline system to discover the spatial extent of relative attributes
and trains an SVM ranker to rank the images. We report the method’s results
obtained by combining the features computed over the global image and discov-
ered patches, which produce the best accuracy.

We also compare against [13], which computes dense SIFT features on key-
points detected using a supervised facial keypoint detector [44] to train an
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Fig. 5. Qualitative results on LFW-10 test images. Each row corresponds to an at-
tribute, with the images uniformly sampled according to predicted attribute strength.
In each image, the STN localization is depicted in the red box. It corresponds to
meaningful regions for each localizable attribute (e.g., top of the head for bald-head
and dark-hair; forehead for visible-forehead; mouth for mouth-open, smile
and visible-teeth; eyes for eyes-open). For more global attributes like good-
looking, masculine-looking, and young, there is no definite answer, but our
method tends to focus on larger areas that encompass the eyes, nose, and mouth.
Finally, the ranking obtained by our method is accurate for all attributes.
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Fig. 6. Qualitative results on UT-Zap50K-1 test images. The STN localizes the relevant
image regions: toe end for pointy, heel for comfort, top opening for open, and area
around the laces for sporty. Our method’s ranking is also accurate for each attribute.

SVM ranker, and [3], which trains an SVM ranker with global image features.
For [3], we compare against the results reported using CNN (pre-trained AlexNet
pool5) features in [14]. Finally, we compare against the local learning method
of [17]. We report its numbers generated using GIST+color-histogram features.

4.1 Qualitative results of localized attributes

We first visualize our attribute localization results. In Fig. 5, we show the results
for the face attributes on the LFW-10 test images. Each row corresponds to a
face attribute, and the red box in each image indicates the output of the STN.
The images in each row are uniformly sampled after sorting them according to
the attribute strength predicted by our network. We can see that our network
localizes the relevant regions for the various face attributes. For example, it
localizes the mouth region for mouth-open, smile, and visible-teeth;
the top of the head for bald-head and dark-hair; near the eyes for eyes-
open; and the forehead for visible-forehead. For more global attributes
like good-looking, masculine-looking, and young, there is no definite
answer but our network tends to localize larger portions of the face.

In Fig. 6, we show the results for the shoe attributes on the UT-Zap50K-1
test images. Again, our network localizes the relevant regions for the different
shoe attributes. It localizes the heel for comfort; the toe end for pointy; and
the top opening for open. Finally, our network is able to produce accurate image
rankings using the localized image parts, as shown in both Fig. 5 and Fig. 6. For
example, we can see the progression of light-to-dark hair for dark-hair, and
closed-to-open shoes for open.
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BH DH EO GL ML MO S VT VF Y Mean
Parikh & Grauman [3]+CNN 78.10 83.09 71.43 68.73 95.40 65.77 63.84 66.46 81.25 72.07 74.61

Sandeep et al. [13] 82.04 80.56 83.52 68.98 90.94 82.04 85.01 82.63 83.52 71.36 81.06
Xiao & Lee [14] 83.21 88.13 82.71 72.76 93.68 88.26 86.16 86.46 90.23 75.05 84.66

Ours 83.94 92.58 90.23 71.21 96.55 91.28 84.75 89.85 87.89 80.81 86.91

Table 1. Attribute ranking accuracy on LFW-10. On average, we outperform all pre-
vious methods, and achieve the best accuracy for 7 out of 10 attributes. These results
show the advantage of our end-to-end network, which simultaneously learns to localize
and rank relative attributes.

Open Pointy Sporty Comfort Mean
Parikh and Grauman [3]+CNN 94.37 93.97 95.40 95.03 94.69

Yu and Grauman [17] 90.67 90.83 92.67 92.37 91.64
Xiao and Lee [14] 95.03 94.80 96.47 95.60 95.47

Ours 94.87 94.93 97.47 95.87 95.78

Table 2. Attribute ranking accuracy on UT-Zap50K-1. The shoe images are well-
aligned, centered, and have clear backgrounds, so all methods obtain very high accuracy
and results are nearly saturated.

Overall, these qualitative results demonstrate that our method is able to
produce accurate localizations.

4.2 Quantitative results for attribute ranking

We next evaluate quantitative ranking accuracy. We report the percentage of
test image pairs whose relative attribute ranking is predicted correctly.

Table 1 shows the results on LFW-10. First, the baseline method of [3] uses a
global representation instead of a local one to model the attributes and produces
the lowest accuracy. The state-of-the-art method of Xiao and Lee [14] outper-
forms the baseline method of [13] because it automatically discovers the relevant
regions of an attribute without relying on pretrained keypoint detectors whose
detected parts may be irrelevant to the attribute. Still, across all attributes, we
improve on average by 2.25% absolute over the method of Xiao and Lee [14],
and produce the best results on seven attributes. This shows the benefit of our
end-to-end network, which learns the attribute features, localization, and ranker
jointly. In contrast, the method of Xiao and Lee [14] optimizes each step inde-
pendently, which leads to sub-optimal results.

Table 2 shows the results on UT-Zap50K-1. For this dataset, our improvement
over the baselines is marginal because the shoe images are so well-aligned, cen-
tered, and have clear backgrounds. Consequently, all baselines obtain very high
accuracy and the results are nearly saturated. Thus, following [14], we perform
a cross-dataset experiment on the more challenging Shoes-with-Attribute [5]
dataset, whose shoe images are not as well-aligned and have more variation in
style and scale. Shoes-with-Attribute has three overlapping attributes with UT-
Zap50K-1 (open, pointy, and sporty) with 140 annotated image pairs per
attribute. We take our models trained on UT-Zap50K-1, and test on Shoes-with-
Attribute in order to evaluate cross-dataset generalization ability. Table 3 shows
the results. We get a significant boost of 4.88% absolute over the method of
Xiao and Lee [14]. This demonstrates that our joint training of the attribute
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Open Pointy Sporty Mean
Parikh & Grauman [3]+CNN 77.10 72.50 71.56 73.72

Xiao & Lee [14] 80.15 82.50 88.07 83.58
Ours 89.31 82.50 93.58 88.46

Table 3. Attribute ranking accuracy on Shoe-with-Attribute using the models trained
on UT-Zap50K-1. We significantly outperform the previous state-of-the-art (Xiao and
Lee [14]) on this more challenging dataset, which demonstrates our network’s cross-
dataset generalization ability.

Natural Open Perspective Size-Large Diagonal Depth-Close Mean
Parikh & Grauman [3] 95.03 90.77 86.73 86.23 86.50 87.53 88.80

Parikh & Grauman [3] + CNN 98.02 94.52 93.04 94.04 95.00 95.25 94.98
Li et al. [45] 95.24 92.39 87.58 88.34 89.34 89.54 90.41

Yu and Grauman [17] 95.70 94.10 90.43 91.10 92.43 90.47 92.37
Ours 98.89 97.20 96.31 95.98 97.64 96.10 97.02

Table 4. Attribute ranking accuracy on OSR. We outperform previous methods.

features, localization, and ranker lead to more robustness to appearance and
scale variations, compared to training them independently.

Finally, Table 4 shows the results on OSR, which contains very different look-
ing images for the same relative attribute (e.g., forest vs. city images for nat-
ural). We compare against the previous state-of-the-art local learning method
of Yu and Grauman [17], the relative forest method of [45], and global image-
based method of [3]. We obtain an overall accuracy of 97.02%, which is better
than all baselines. More importantly, this result shows our advantage over the
method of Xiao and Lee [14], which is not applicable to this dataset, since it
requires a visually consistent concept (e.g., the same object) for an attribute to
build its visual chains. In contrast, our method can handle drastically different
visual concepts for the same attribute (e.g., forest image with trees being more
natural than city image with buildings) since the STN only needs to localize
the most relevant region in each image without requiring that the concept be
present in other images.

4.3 Ablation study

We study the contribution that the global image versus the output region of the
STN has on ranking performance. For this, we train and compare two baseline
networks: (1) the RN is trained with only the global image as input (Global
image), i.e., we do not have the STN as part of the network; and (2) the RN
is trained with only the STN output region as input without the global image
(STN output). For both baseline networks, the final linear layer uses the newly-
learned 4096-D feature output of the RN to generate the attribute strength v.

Table 5 shows quantitative ranking accuracy of these baseline networks on
LFW-10. Overall, the STN output baseline outperforms the Global image base-
line. It performs especially well for attributes that are conditioned on small facial
parts like eyes-open, mouth-open, and visible-teeth. This is mainly be-
cause the Global image baseline needs to process the entire input image, which
means that small object parts like the eyes or mouth have very low resolu-
tion, and thus, cannot receive the fine-grained attention that they need. In con-
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BH DH EO GL ML MO S VT VF Y Mean
Global image 84.31 90.21 82.71 69.97 94.83 80.20 80.79 79.38 85.55 77.19 82.51
STN output 78.10 89.32 93.23 66.56 95.4 91.28 84.46 88.62 85.55 73.77 84.63
Combined 83.94 92.58 90.23 71.21 96.55 91.28 84.75 89.85 87.89 80.81 86.91

Table 5. Ablation study on LFW-10 comparing the contribution of the global input
image (1st row) and the STN’s localized output region (2nd row) for attribute rank-
ing. Our combined model (3rd row) produces the best performance, showing that the
information present in the global image and STN output are complementary.

trast, the STN can attend to those small informative parts, and provide a high-
resolution (cropped-out) image for the RN to learn the ranking function. Finally,
the third row in Table 5 shows the result of our full model, i.e., combining both
the global input image and STN output to train the RN. Our full model produces
the best accuracy for eight out of the 10 attributes, which shows that the global
contextual information from the input image and the fine-grained information
from the localized STN output are complementary. The boost is especially signifi-
cant for mid-sized and global attributes like dark-hair, visible-forehead,
and young, likely because they require both fine-grained information of specific
parts as well as more global contextual information of the entire face.

4.4 Computational speed analysis

Finally, we analyze the computational speed of our network. Our approach is
significantly faster than the related baseline method of Xiao and Lee [14]. Since
that method has to process a sequence of time-consuming modules including
feature extraction, nearest neighbor matching, iterative SVM classifier training
to build the visual chains, and training an SVM ranker to rank the chains, it
takes ∼10 hours to train one attribute model on LFW-10 using a cluster of 20
CPU nodes with 2 cores each. In contrast, our end-to-end network only takes
∼3 hours to train one attribute model using a single Titan X GPU. For testing,
our approach takes only 0.011 seconds per image compared to 1.1 seconds per
image for [14].

5 Discussion

We presented a novel end-to-end deep network that combines a localization
module with a ranking module to jointly localize and rank relative attributes.
Our qualitative results showed our network’s ability to accurately localize the
meaningful image patches corresponding to an attribute. We demonstrated state-
of-the-art attribute ranking performance on benchmark face, shoe, and outdoor
scene datasets. One limitation of our approach is that it can only localize one
image part for a visual attribute. However, for certain attributes there can be
multiple relevant parts. We would like to explore this issue further either by
having multiple spatial transformers or directly predicting pixel-level relevance.
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