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Abstract
We propose ‘Hide-and-Seek’, a weakly-supervised

framework that aims to improve object localization in im-
ages and action localization in videos. Most existing
weakly-supervised methods localize only the most discrim-
inative parts of an object rather than all relevant parts,
which leads to suboptimal performance. Our key idea is
to hide patches in a training image randomly, forcing the
network to seek other relevant parts when the most dis-
criminative part is hidden. Our approach only needs to
modify the input image and can work with any network de-
signed for object localization. During testing, we do not
need to hide any patches. Our Hide-and-Seek approach ob-
tains superior performance compared to previous methods
for weakly-supervised object localization on the ILSVRC
dataset. We also demonstrate that our framework can be
easily extended to weakly-supervised action localization.

1. Introduction
Weakly-supervised approaches have been proposed for

various visual classification and localization tasks includ-
ing object detection [55, 13, 9, 41, 3, 50, 43, 8, 32, 61, 40],
semantic segmentation [33, 26] and visual attribute local-
ization [2, 53, 57, 52, 39]. The main advantage of weakly-
supervised learning is that it requires less detailed annota-
tions compared to the fully-supervised setting, and therefore
has the potential to use the vast weakly-annotated visual
data available on the Web. For example, weakly-supervised
object detectors can be trained using only image-level labels
(‘dog’ or ‘no dog’) without any object location annotations.

Existing weakly-supervised methods identify discrimi-
native patterns in the training data that frequently appear in
one class and rarely in the remaining classes. This is done
either explicitly by mining discriminative image regions or
features [55, 13, 9, 41, 3, 42, 43, 8, 40] or implicitly by ana-
lyzing the higher-layer activation maps produced by a deep
network trained for image classification [38, 32, 61]. How-
ever, due to intra-category variations or relying only on a
classification objective, these methods often fail to identify
the entire extent of the object and instead localize only the
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Figure 1. Main idea. (Top row) A network tends to focus on the
most discriminative parts of an image (e.g., face of the dog) for
classification. (Bottom row) By hiding images patches randomly,
we can force the network to focus on other relevant object parts in
order to correctly classify the image as ’dog’.

most discriminative part.
Recent work tries to address this issue of identifying only

the most discriminative part. Song et al. [43] combine mul-
tiple co-occurring discriminative regions to cover a larger
extent of the object. While multiple selections ensure larger
coverage, it does not guarantee selection of less discrimi-
native patches of the object in the presence of many highly
discriminative ones. Singh et al. [40] use motion cues and
transfer tracked object boxes from weakly-labeled videos
to the images. However, this approach requires additional
weakly-labeled videos, which may not always be available.
Finally, Zhou et al. [61] replace max pooling with global av-
erage pooling after the final convolution layer of an image
classification network. Since average pooling aggregates
activations across an entire feature map, it encourages the
network to look beyond the most discriminative part (which
would suffice for max pooling). However, the network can
still avoid finding less discriminative parts if identifying a
few highly-discriminative parts can lead to accurate classi-
fication performance, as shown in Figure 1(top row).

Main Idea. In this paper, we take a radically different
approach to this problem. Instead of making algorithmic
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changes [43, 61] or relying on external data [40], we make
changes to the input image. The key idea is to hide patches
from an image during training so that the model needs to
seek the relevant object parts from what remains. We thus
name our approach ‘Hide-and-Seek’. Figure 1 (bottom row)
demonstrates the intuition: if we randomly remove some
patches from the image then there is a possibility that the
dog’s face, which is the most discriminative, will not be
visible to the model. In this case, the model must seek other
relevant parts like the tail and legs in order to do well on the
classification task. By randomly hiding different patches in
each training epoch, the model sees different parts of the
image and is forced to focus on multiple relevant parts of
the object beyond just the most discriminative one. Impor-
tantly, we only apply this random hiding of patches during
training and not during testing. Since the full image is ob-
served during testing, the data distribution will be different
to that seen during training. We show that setting the hidden
pixels’ value to be the data mean can allow the two distri-
butions to match, and provide a theoretical justification.

Since Hide-and-Seek only alters the input image, it
can easily be generalized to different neural networks and
tasks. In this work, we demonstrate its applicability on
AlexNet [28] and GoogLeNet [46], and apply the idea
to weakly-supervised object localization in images and
weakly-supervised action localization in videos. For the
temporal action localization task (in which the start and
end times of an action need to be found), random frame
sequences are hidden while training a network on action
classification, which forces the network to learn the relevant
frames corresponding to an action.

Contributions. Our work has three main contributions:
1) We introduce the idea of Hide-and-Seek for weakly-
supervised localization and produce state-of-the-art object
localization results on the ILSVRC dataset [36]; 2) We
demonstrate the generalizability of the approach on differ-
ent networks and layers; 3) We extend the idea to the rel-
atively unexplored task of weakly-supervised temporal ac-
tion localization.

2. Related Work

Weakly-supervised object localization. Fully-
supervised convolutional networks (CNNs) have demon-
strated great performance on object detection [16, 15, 30],
segmentation [31] and attribute localization [11, 60, 27],
but require expensive human annotations for training
(e.g. bounding box for object localization). To alle-
viate expensive annotation costs, weakly-supervised
approaches learn using cheaper labels, for example,
image-level labels for predicting an object’s loca-
tion [55, 13, 9, 41, 3, 43, 50, 8, 32, 61].

Most weakly-supervised object localization approaches

mine discriminative features or patches in the data that fre-
quently appear in one class and rarely in other classes [55,
13, 9, 41, 3, 7, 42, 43, 8]. However, these approaches tend to
focus only on the most discriminative parts, and thus fail to
cover the entire spatial extent of an object. In our approach,
we hide image patches (randomly) during training, which
forces our model to focus on multiple parts of an object and
not just the most discriminative ones. Other methods use
additional motion cues from weakly-labeled videos to im-
prove object localization [35, 40]. While promising, such
videos are not always readily available and can be challeng-
ing to obtain especially for static objects. In contrast, our
method does not require any additional data or annotations.

Recent work modify CNN architectures designed for im-
age classification so that the convolutional layers learn to
localize objects while performing image classification [32,
61]. Other network architectures have been designed for
weakly-supervised object detection [20, 4, 24]. Although
these methods have significantly improved the state-of-the-
art, they still essentially rely on a classification objective
and thus can fail to capture the full extent of an object if
the less discriminative parts do not help improve classifica-
tion performance. We also rely on a classification objective.
However, rather than modifying the CNN architecture, we
instead modify the input image by hiding random patches
from it. We demonstrate that this enforces the network to
give attention to the less discriminative parts and ultimately
localize a larger extent of the object.

Masking pixels or activations. Masking image patches
has been applied for object localization [1], self-supervised
feature learning [34], semantic segmentation [17, 10], gen-
erating hard occlusion training examples for object detec-
tion [54], and to visualize and understand what a CNN has
learned [59]. In particular, for object localization, [59, 1]
train a CNN for image classification and then localize the
regions whose masking leads to a large drop in classification
performance. Since these approaches mask out the image
regions only during testing and not during training, the lo-
calized regions are limited to the highly-discriminative ob-
ject parts. In our approach, image regions are masked dur-
ing training, which enables the model to learn to focus on
even the less discriminative object parts. Finally, our work
is closely related to the adversarial erasing method of [56],
which iteratively trains a sequence of models for weakly-
supervised semantic segmentation. Each model identifies
the relevant object parts conditioned on the previous iter-
ation model’s output. In contrast, we only train a single
model once—and is thus less expensive—and do not rely on
saliency detection to refine the localizations as done in [56].

Dropout [44] and its variants [49, 47] are also related.
There are two main differences: (1) these methods are de-
signed to prevent overfitting while our work is designed to
improve localization; and (2) in dropout, units in a layer are
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Figure 2. Approach overview. Left: For each training image, we divide it into a grid of S × S patches. Each patch is then randomly
hidden with probability phide and given as input to a CNN to learn image classification. The hidden patches change randomly across
different epochs. Right: During testing, the full image without any hidden patches is given as input to the trained network.

dropped randomly, while in our work, contiguous image re-
gions or video frames are dropped. We demonstrate in the
experiments that our approach produces significantly better
localizations compared to dropout.

Action localization. Action localization is a well stud-
ied problem [29, 6, 51, 21, 23]. Recent CNN-based ap-
proaches [58, 37] have shown superior performance com-
pared to previous hand-crafted approaches. These fully-
supervised methods require the start and end time of an ac-
tion in the video during the training to be annotated, which
can be expensive to obtain. Weakly-supervised approaches
learn from movie scripts [29, 12] or an ordered list of ac-
tions [5, 18]. Sun et al. [45] combine weakly-labeled videos
with web images for action localization. In contrast to these
approaches, our approach only uses a single video-level ac-
tion label for temporal action localization. [14] also only
use video-level action labels for action localization with the
focus on finding the key event frames of an action. We in-
stead focus on localizing the full extent of an action.

3. Approach
In this section, we first describe our Hide-and-Seek algo-

rithm for object localization in images followed by action
localization in videos.

3.1. Weakly-supervised object localization

For weakly-supervised object localization, we are given
a set of images Iset = {I1, I2, ....., IN} in which each im-
age I is labeled only with its category label. Our goal is to
learn an object localizer that can predict both the category
label as well as the bounding box for the object-of-interest
in a new test image Itest. In order to learn the object lo-
calizer, we train a CNN which simultaneously learns to lo-
calize the object while performing the image classification

task. While numerous approaches have been proposed to
solve this problem, existing methods (e.g., [42, 8, 32, 61])
are prone to localizing only the most discriminative object
parts, since those parts are sufficient for optimizing the clas-
sification task.

To enforce the network to learn all of the relevant parts
of an object, our key idea is to randomly hide patches of
each input image I during training, as we explain next.

Hiding random image patches. The purpose of hiding
patches is to show different parts of an object to the net-
work while training it for the classification task. By hiding
patches randomly, we can ensure that the most discrimina-
tive parts of an object are not always visible to the network,
and thus force it to also focus on other relevant parts of the
object. In this way, we can overcome the limitation of exist-
ing weakly-supervised methods that focus only on the most
discriminative parts of an object.

Concretely, given a training image I of size W ×H × 3,
we first divide it into a grid with a fixed patch size of S×S×
3. This results in a total of (W ×H)/(S × S) patches. We
then hide each patch with phide probability. For example,
in Fig. 2 left, the image is of size 224 × 224 × 3, and it is
divided into 16 patches of size 56 × 56 × 3. Each patch
is hidden with phide = 0.5 probability. We take the new
image I ′ with the hidden patches, and feed it as a training
input to a CNN for classification.

Importantly, for each image, we randomly hide a differ-
ent set of patches. Also, for the same image, we randomly
hide a different set of patches in each training epoch. This
property allows the network to learn multiple relevant ob-
ject parts for each image. For example, in Fig. 2 left, the
network sees a different I ′ in each epoch due to the random-
ness in hiding of the patches. In the first epoch, the dog’s
face is hidden while its legs and tail are clearly visible. In
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Figure 3. There are three types of convolutional filter activations
after hiding patches: a convolution filter can be completely within
a visible region (blue box), completely within a hidden region (red
box), or partially within a visible/hidden region (green box).

contrast, in the second epoch, the face is visible while the
legs and tail are hidden. Thus, the network is forced to learn
all of the relevant parts of the dog rather than only the highly
discriminative part (i.e., the face) in order to perform well
in classifying the image as a ‘dog’.

We hide patches only during training. During testing,
the full image—without any patches hidden—is given as
input to the network; Fig. 2 right. Since the network has
learned to focus on multiple relevant parts during training,
it is not necessary to hide any patches during testing. This
is in direct contrast to [1], which hides patches during test-
ing but not during training. For [1], since the network has
already learned to focus on the most discimirinative parts
during training, it is essentially too late, and hiding patches
during testing has no significant effect on localization per-
formance.

Setting the hidden pixel values. There is an important
detail that we must be careful about. Due to the discrepancy
of hiding patches during training while not hiding patches
during testing, the first convolutional layer activations dur-
ing training versus testing will have different distributions.
For a trained network to generalize well to new test data,
the activation distributions should be roughly equal. That is,
for any unit in a neural network that is connected to x units
with w outgoing weights, the distribution of w>x should be
roughly the same during training and testing. However, in
our setting, this will not necessarily be the case since some
patches in each training image will be hidden while none of
the patches in each test image will ever be hidden.

Specifically, in our setting, suppose that we have a
convolution filter F with kernel size K × K and three-
dimensional weights W = {w1,w2, ....,wk×k}, which is
applied to an RGB patch X = {x1,x2, ....,xk×k} in image
I ′. Denote v as the vector representing the RGB value of
every hidden pixel. There are three types of activations:

1. F is completely within a visible patch (Fig. 3, blue
box). The corresponding output will be

∑k×k
i=1 w>i xi.

2. F is completely within a hidden patch (Fig. 3, red

box). The corresponding output will be
∑k×k

i=1 w>i v.

3. F is partially within a hidden patch (Fig. 3,
green box). The corresponding output will be∑

m∈visible w
>
mxm +

∑
n∈hidden w

>
n v.

During testing, F will always be completely within a vis-
ible patch, and thus its output will be

∑k×k
i=1 w>i xi. This

matches the expected output during training in only the first
case. For the remaining two cases, when F is completely or
partially within a hidden patch, the activations will have a
distribution that is different to those seen during testing.

We resolve this issue by setting the RGB value v of a
hidden pixel to be equal to the mean RGB vector of the
images over the entire dataset: v = µ = 1

Npixels

∑
j xj ,

where j indexes all pixels in the entire training dataset and
Npixels is the total number of pixels in the dataset. Why
would this work? Essentially, we are assuming that in ex-
pectation, the output of a patch will be equal to that of an
average-valued patch: E[

∑k×k
i=1 w>i xi] =

∑k×k
i=1 w>i µ. By

replacing v with µ, the outputs of both the second and third
cases will be

∑k×k
i=1 w>i µ, and thus will match the expected

output during testing (i.e., of a fully-visible patch).1

This process is related to the scaling procedure in
dropout [44], in which the outputs are scaled proportional
to the drop rate during testing to match the expected out-
put during training. In dropout, the outputs are dropped
uniformly across the entire feature map, independently of
spatial location. If we view our hiding of the patches as
equivalent to “dropping” units, then in our case, we can-
not have a global scale factor since the output of a patch
depends on whether there are any hidden pixels. Thus, we
instead set the hidden values to be the expected pixel value
of the training data as described above, and do not scale the
corresponding output. Empirically, we find that setting the
hidden pixel in this way is crucial for the network to behave
similarly during training and testing.

Object localization network architecture. Our ap-
proach of hiding patches is independent of the network ar-
chitecture and can be used with any CNN designed for ob-
ject localization. For our experiments, we choose to use
the network of Zhou et al. [61], which performs global av-
erage pooling (GAP) over the convolution feature maps to
generate a class activation map (CAM) for the input im-
age that represents the discriminative regions for a given
class. This approach has shown state-of-the-art perfor-
mance for the ILSVRC localization challenge [36] in the
weakly-supervised setting, and existing CNN architectures
like AlexNet [28] and GoogLeNet [46] can easily be modi-
fied to generate a CAM.

1For the third case:
∑

m∈visible w
>
mxm +

∑
n∈hidden w>n µ ≈∑

m∈visible w
>
mµ+

∑
n∈hidden w>n µ =

∑k×k
i=1 w>i µ.



To generate a CAM for an image, global average pool-
ing is performed after the last convolutional layer and the
result is given to a classification layer to predict the image’s
class probabilities. The weights associated with a class in
the classification layer represent the importance of the last
convolutional layer’s feature maps for that class. More for-
mally, denote F = {F1, F2, .., FM} to be the M feature
maps of the last convolutional layer and W as the N ×M
weight matrix of the classification layer, where N is num-
ber of classes. Then, the CAM for class c for image I is:

CAM(c, I) =

M∑
i=1

W (c, i) · Fi(I). (1)

Given the CAM for an image, we generate a bound-
ing box using the method proposed in [61]. Briefly,
we first threshold the CAM to produce a binary fore-
ground/background map, and then find connected compo-
nents among the foreground pixels. Finally, we fit a tight
bounding box to the largest connected component. We refer
the reader to [61] for more details.

3.2. Weakly-supervised action localization

Given a set of untrimmed videos Vset =
{V1, V2, ..., VN} and video class labels, our goal here
is to learn an action localizer that can predict the label of an
action as well as its start and end time for a test video Vtest.
Again the key issue is that for any video, a network will
focus mostly on the highly-discriminative frames in order
to optimize classification accuracy instead of identifying all
relevant frames. Inspired by our idea of hiding the patches
in images, we propose to hide frames in videos to improve
action localization.

Specifically, during training, we uniformly sample video
Ftotal frames from each videos. We then divide the Ftotal

frames into continuous segments of fixed size Fsegment;
i.e., we have Ftotal/Fsegemnt segments. Just like with im-
age patches, we hide each segment with probability phide
before feeding it into a deep action localizer network. We
generate class activation maps (CAM) using the procedure
described in the previous section. In this case, our CAM
is a one-dimensional map representing the discriminative
frames for the action class. We apply thresholding on this
map to obtain the start and end times for the action class.

4. Experiments
We perform quantitative and qualitative evaluations of

Hide-and-Seek for object localization in images and action
localization in videos. We also perform ablative studies to
compare the different design choices of our algorithm.

Datasets and evaluation metrics. We use ILSVRC
2016 [36] to evaluate object localization accuracy. For
training, we use 1.2 million images with their class labels

(1000 categories). We compare our approach with the base-
lines on the validation data. We use three evaluation met-
rics to measure performance: 1) Top-1 localization accu-
racy (Top-1 Loc): fraction of images for which the predicted
class with the highest probability is the same as the ground-
truth class and the predicted bounding box for that class has
more than 50% IoU with the ground-truth box. 2) Local-
ization accuracy with known ground-truth class (GT-known
Loc): fraction of images for which the predicted bounding
box for the ground-truth class has more than 50% IoU with
the ground-truth box. As our approach is primarily designed
to improve localization accuracy, we use this criterion to
measure localization accuracy independent of classification
performance. 3) We also use classification accuracy (Top-
1 Clas) to measure the impact of Hide-and-Seek on image
classification performance.

For action localization, we use THUMOS 2014 valida-
tion data [22], which consists of 1010 untrimmed videos be-
longing to 101 action classes. We train over all untrimmed
videos for the classification task and then evaluate local-
ization on the 20 classes that have temporal annotations.
Each video can contain multiple instances of a class. For
evaluation we compute mean average precision (mAP), and
consider a prediction to be correct if it has IoU > θ with
ground-truth. We vary θ to be 0.1, 0.2, 0.3, 0.4, and 0.5. As
we are focusing on localization ability of the network, we
assume we know the ground-truth class label of the video.

Implementation details. To learn the object localizer, we
use the same modified AlexNet and GoogLeNet networks
introduced in [61] (AlexNet-GAP and GoogLeNet-GAP).
AlexNet-GAP is identical to AlexNet until pool5 (with
stride 1) after which two new conv layers are added. Simi-
larly for GoogLeNet-GAP, layers after inception-4e are re-
moved and a single conv layer is added. For both AlexNet-
GAP and GoogLeNet-GAP, the output of the last conv layer
goes to a global average pooling (GAP) layer, followed by a
softmax layer for classification. Each added conv layer has
512 and 1024 kernels of size 3 × 3, stride 1, and pad 1 for
AlexNet-GAP and GoogLeNet-GAP, respectively.

We train the networks from scratch for 55 and 40 epochs
for AlexNet-GAP and GoogLeNet-GAP, respectively, with
a batch size of 128 and initial learning rate of 0.01. We grad-
ually decrease the learning rate to 0.0001. We add batch
normalization [19] after every conv layer to help conver-
gence of GoogLeNet-GAP. For simplicity, unlike the orig-
inal AlexNet architecture [28], we do not group the conv
filters together (it produces statistically the same Top-1 Loc
accuracy as the grouped version for both AlexNet-GAP but
has better image classification performance). The network
remains exactly the same with (during training) and without
(during testing) hidden image patches. To obtain the binary
fg/bg map, 20% and 30% of the max value of the CAM is
chosen as the threshold for AlexNet-GAP and GoogLeNet-



Methods GT-known Loc Top-1 Loc Top-1 Clas
AlexNet-GAP [61] 54.902 36.25 60.23
AlexNet-HaS-16 57.86 36.77 57.97
AlexNet-HaS-32 58.75 37.33 57.94
AlexNet-HaS-44 58.55 37.54 58.10
AlexNet-HaS-56 58.43 37.34 58.13

AlexNet-HaS-Mixed 58.68 37.65 58.68
GoogLeNet-GAP [61] 58.412 43.60 71.95
GoogLeNet-HaS-16 59.83 44.62 70.49
GoogLeNet-HaS-32 60.29 45.21 70.70
GoogLeNet-HaS-44 60.11 44.75 70.34
GoogLeNet-HaS-56 59.93 44.78 70.37

Table 1. Localization accuracy on ILSVRC validation data with
different patch sizes for hiding. Our Hide-and-Seek always per-
forms better than AlexNet-GAP [61], which sees the full image.

GAP, respectively; the thresholds were chosen by observing
a few qualitative results on training data. During testing,
we average 10 crops (4 corners plus center, and same with
horizontal flip) to obtain class probabilities and localiza-
tion maps. We find similar localization/classification per-
formance when fine-tuning pre-trained networks.

For action localization, we compute C3D [48] fc7 fea-
tures using a model pre-trained on Sports 1 million [25].
We compute 10 feats/sec (each feature is computed over
16 frames) and uniformly sample 2000 features from the
video. We then divide the video into 20 equal-length seg-
ments each consisting of Fsegment = 100 features. During
training, we hide each segment with phide = 0.5. For action
classification, we feed C3D features as input to a CNN with
two conv layers followed by a global max pooling and soft-
max classification layer. Each conv layer has 500 kernels
of size 1 × 1, stride 1. For any hidden frame, we assign it
the dataset mean C3D feature. For thresholding, 50% of the
max value of the CAM is chosen. All continuous segments
after thresholding are considered predictions.

4.1. Object localization quantitative results

We first analyze object localization accuracy on the
ILSVRC validation data. Table 1 shows the results us-
ing the Top-1 Loc and GT-known Loc evaluation metrics.
AlexNet-GAP [61] is our baseline in which the network
has seen the full image during training without any hidden
patches. Alex-HaS-N is our approach, in which patches of
size N ×N are hidden with 0.5 probability during training.

Which patch size N should we choose? We explored
four different patch sizes N = {16, 32, 44, 56}, and each
performs significantly better than AlexNet-GAP for both
GT-known Loc and Top-1 Loc. Our GoogLeNet-HaS-N
models also outperfors GoogLeNet-GAP for all patch sizes.
These results clearly show that hiding patches during train-
ing leads to better localization. Although our approach can
lose some classification accuracy (Top-1 Clas) since it has

2[61] does not provide GT-known loc, so we compute on our own GAP
implementations, which achieve similar Top-1 Loc accuracy.

Methods GT-known Loc Top-1 Loc
Backprop on AlexNet [38] - 34.83

AlexNet-GAP [61] 54.90 36.25
Ours 58.68 37.65

AlexNet-GAP-ensemble 56.91 38.58
Ours-ensemble 60.14 40.40

Backprop on GoogLeNet [38] - 38.69
GoogLeNet-GAP [61] 58.41 43.60

Ours 60.29 45.21
Table 2. Localization accuracy on ILSVRC val data compared to
state-of-the-art. Our method outperforms all previous methods.

never seen a complete image and thus may not have learned
to relate certain parts, the huge boost in localization perfor-
mance (which can be seen by comparing the GT-known Loc
accuracies) makes up for any potential loss in classification.

We also train a network (AlexNet-HaS-Mixed) with
mixed patch sizes. During training, for each image in every
epoch, the patch sizeN to hide is chosen randomly from 16,
32, 44 and 56 as well as no hiding (full image). Since differ-
ent sized patches are hidden, the network can learn comple-
mentary information about different parts of an object (e.g.
small/large patches are more suitable to hide smaller/larger
parts). Indeed, we achieve the best results for Top-1 Loc
using AlexNet-HaS-Mixed.

Comparison to state-of-the-art. Next, we choose our
best model for AlexNet and GoogLeNet, and compare it
with state-of-the-art methods on ILSVRC validation data;
see Table 2. Our method performs 3.78% and 1.40% points
better than AlexNet-GAP [61] on GT-known Loc and Top-1
Loc, respectively. For GoogLeNet, our model gets a boost
of 1.88% and 1.61% points compared to GoogLeNet-GAP
for GT-known Loc and Top-1 Loc accuracy, respectively.
Importantly, these gains are obtained simply by changing
the input image without changing the network architecture.

Ensemble model. Since each patch size provides com-
plementary information (as seen in the previous section),
we also create an ensemble model of different patch sizes
(Ours-ensemble). To produce the final localization for an
image, we average the CAMs obtained using AlexNet-HaS-
16, 32, 44, and 56, while for classification, we average
the classification probabilities of all four models as well as
the probability obtained using AlexNet-GAP. This ensem-
ble model gives a boost of 5.24 % and 4.15% over AlexNet-
GAP for GT-known Loc and Top-1 Loc, respectively. For a
more fair comparison, we also combine the results of five
independent AlexNet-GAPs to create an ensemble baseline.
Ours-ensemble outperforms this strong baseline (AlexNet-
GAP-ensemble) by 3.23% and 1.82% for GT-known Loc
and Top-1 Loc, respectively.

4.2. Object localization qualitative results

In Fig. 4, we visualize the class activation map (CAM)
and bounding box obtained by our AlexNet-HaS approach
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Figure 4. Qualitative object localization results. We compare our approach with AlexNet-GAP [61] on the ILVRC validation data. For
each image, we show the bounding box and CAM obtained by AlexNet-GAP (left) and our method (right). Our Hide-and-Seek approach
localizes multiple relevant parts of an object whereas AlexNet-GAP mainly focuses only on the most discriminative parts.

versus those obtained with AlexNet-GAP. In each image
pair, the first image shows the predicted (green) and ground-
truth (red) bounding box. The second image shows the
CAM, i.e., where the network is focusing for that class. Our
approach localizes more relevant parts of an object com-
pared to AlexNet-GAP and is not confined to only the most
discriminative parts. For example, in the first, second, and
fifth rows AlexNet-GAP only focuses on the face of the an-
imals, whereas our method also localizes parts of the body.
Similarly, in the third and last rows AlexNet-GAP misses

the tail for the snake and squirrel while ours gets the tail.

4.3. Further Analysis of Hide-and-Seek

Comparison with dropout. Dropout [44] has been ex-
tensively used to reduce overfitting in deep network. Al-
though it is not designed to improve localization, the drop-
ping of units is related to our hiding of patches. We there-
fore conduct an experiment in which 50% dropout is ap-
plied at the image layer. We noticed that the due to the
large dropout rate at the pixel-level, the learned filters de-



Methods GT-known Loc Top-1 Loc
Ours 58.68 37.65

AlexNet-dropout-trainonly 42.17 7.65
AlexNet-dropout-traintest 53.48 31.68

Table 3. Our approach outperforms Dropout [44] for localization.

Methods GT-known Loc Top-1 Loc
AlexNet-GAP 54.90 36.25

AlexNet-Avg-HaS 58.43 37.34
AlexNet-GMP 50.40 32.52

AlexNet-Max-HaS 59.27 37.57
Table 4. Global average pooling (GAP) vs. global max pooling
(GMP). Unlike [61], for Hide-and-Seek GMP still performs well
for localization. For this experiment, we use patch size 56.

Methods GT-known Loc Top-1 Loc
AlexNet-GAP 54.90 36.25

AlexNet-HaS-conv1-5 57.36 36.91
AlexNet-HaS-conv1-11 58.33 37.38

Table 5. Applying Hide-and-Seek to the first conv layer. The im-
provement over [61] shows the generality of the idea.

velop a bias toward a dropped-out version of the images and
produces significantly inferior classification and localiza-
tion performance (AlexNet-dropout-trainonly). If we also
do dropout during testing (AlexNet-dropout-traintest) then
performance improves but is still much lower compared
to our approach Table 3. Since dropout drops pixels (and
RGB channels) randomly, information from the most rele-
vant parts of an object will still be seen by the network with
high probability, which makes it likely to focus on only the
most discriminative parts.

Do we need global average pooling? [61] showed that
GAP is better than global max pooling (GMP) for object
localization, since average pooling encourages the network
to focus on all the discriminative parts. For max pooling,
only the most discriminative parts need to contribute. But
is global max pooling hopeless for localization?

With our Hide-and-Seek, even with max pooling, the
network is forced to focus on a different discriminative
parts. In Table 4, we see that max pooling (AlexNet-GMP)
is inferior to average poling (AlexNet-GAP) for the base-
lines. But with Hide-and-Seek, max pooling (AlexNet-
Max-HaS) localization accuracy increases by a big margin
and even slightly outperforms average pooling (AlexNet-
Avg-HaS). The slight improvement is likely due to max
pooling being more robust to noise.

Hide-and-Seek in convolutional layers. We next apply
our idea to convolutional layers. We divide the convolu-
tional feature maps into a grid and hide each patch (and all
of its corresponding channels) with 0.5 probability. We hide
patches of size 5 (AlexNet-HaS-conv1-5) and 11 (AlexNet-
HaS-conv1-11) in the conv1 feature map (which has size
55×55×96). Table-5 shows that this leads to a big boost in
performance compared to the baseline AlexNet-GAP. This

Methods GT-known Loc Top-1 Loc
AlexNet-HaS-25% 57.49 37.77
AlexNet-HaS-33% 58.12 38.05
AlexNet-HaS-50% 58.43 37.34
AlexNet-HaS-66% 58.52 35.72
AlexNet-HaS-75% 58.28 34.21

Table 6. Varying the hiding probability. Higher probabilities
lead to decrease in Top-1 Loc whereas lower probability leads to
smaller GT-known Loc. For this experiment, we use patch size 56.

Methods IOU thresh = 0.1 0.2 0.3 0.4 0.5
Video-full 34.23 25.68 17.72 11.00 6.11
Video-HaS 36.44 27.84 19.49 12.66 6.84

Table 7. Action localization accuracy on THUMOS validation
data. Across all 5 IoU thresholds, our Video-HaS outperforms the
full video baseline (Video-full).

shows that our idea of randomly hiding patches can be gen-
eralized to the convolutional layers.

Probability of hiding. In all of the previous experiments,
we hid patches with 50% probability. In Table 6, we mea-
sure the GT-known Loc and Top-1 Loc when we use dif-
ferent hiding probabilities. If we increase the probability
then GT-known Loc remains almost the same while Top-1
Loc decreases a lot. This happens because the network sees
fewer pixels when the hiding probability is high; as a result,
classification accuracy reduces and Top-1 Loc drops. If we
decrease the probability then GT-known Loc decreases but
our Top-1 Loc improves. In this case, the network sees more
pixels so its classification improves but since less parts are
hidden, it will focus more on only the discriminative parts
decreasing its localization ability.

4.4. Action localization results

Finally, we evaluate action localization accuracy. We
compare our approach (Video-HaS), which randomly hides
frame segments while learning action classification, with a
baseline that sees the full video (Video-full). Table 7 shows
the result on THUMOS validation data. Video-HaS consis-
tently outperforms Video-full for action localization task,
which shows that hiding frames forces our network to focus
on more relevant frames, which ultimately leads to better
action localization. We show qualitative results in the supp.

5. Conclusion
We presented ‘Hide-and-Seek’, a novel weakly-

supervised framework to improve object localization in im-
ages and temporal action localization in videos. By ran-
domly hiding patches/frames in a training image/video, we
force the network to learn to focus on multiple relevant parts
of an object/action. Our extensive experiments showed im-
proved localization accuracy over state-of-the-art methods.
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[17] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-
taneous detection and segmentation. In ECCV, 2014. 2

[18] D.-A. Huang, L. Fei-Fei, and J. C. Niebles. Connectionist
temporal modeling for weakly supervised action labeling. In
ECCV, 2016. 3

[19] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 5

[20] M. Jaderberg, K. Simonyan, A. Zisserman, and
k. kavukcuoglu. Spatial transformer networks. In NIPS,
2015. 2

[21] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black.
Towards understanding action recognition. In ICCV, 2013. 3

[22] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,
M. Shah, and R. Sukthankar. THUMOS challenge: Ac-
tion recognition with a large number of classes. http:
//crcv.ucf.edu/THUMOS14/, 2014. 5

[23] V. Kantorov and I. Laptev. Efficient feature extraction, en-
coding and classification for action recognition. In CVPR,
2014. 3

[24] V. Kantorov, M. Oquab, M. Cho, and I. Laptev. Contextloc-
net: Context-aware deep network models for weakly super-
vised localization. In ECCV, 2016. 2

[25] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In CVPR, 2014. 6

[26] A. Khoreva, R. Benenson, M. Omran, M. Hein, and
B. Schiele. Weakly supervised object boundaries. In CVPR,
2016. 1

[27] M. Kiapour, K. Yamaguchi, A. C. Berg, and T. L. Berg. Hip-
ster wars: Discovering elements of fashion styles. In ECCV,
2014. 2

[28] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classi-
fication with Deep Convolutional Neural Networks. In NIPS,
2012. 2, 4, 5

[29] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008. 3

[30] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. Ssd: Single shot multibox detector. In
ECCV, 2016. 2

[31] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 2

[32] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object local-
ization for free? weakly-supervised learning with convolu-
tional neural networks. In CVPR, 2015. 1, 2, 3
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