CS 540 Introduction to Artificial Intelligence
Probability
Yudong Chen
University of Wisconsin-Madison

Sep 14, 2021
Probability: What is it good for?

- Language to express **uncertainty**
In AI/ML Context

- Quantify predictions

\[
[p(\text{lion}), p(\text{tiger})] = [0.98, 0.02]
\]

\[
[p(\text{lion}), p(\text{tiger})] = [0.01, 0.99]
\]

\[
[p(\text{lion}), p(\text{tiger})] = [0.43, 0.57]
\]
Model Data Generation

- Model complex distributions

StyleGAN2 (Kerras et al ’20)
Outline

• Basics: definitions, axioms, RVs, joint distributions

• Independence, conditional probability, chain rule

• Bayes’ Rule and Inference
Basics: Outcomes & Events

- Outcomes: possible results of an experiment
- Events: subsets of outcomes we’re interested in

Ex: $\Omega = \{1, 2, 3, 4, 5, 6\}$

$F = \{\emptyset, \{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \Omega\}$
Basics: Outcomes & Events

• Event space can be smaller:

\[\mathcal{F} = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\} \]

• Two components always in it!

\[\emptyset, \Omega \]
Basics: Probability Distribution

• We have outcomes and events.
• Now assign probabilities

For $E \in \mathcal{F}$, $P(E) \in [0, 1]$

Back to our example:

$\mathcal{F} = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}$

$P(\{1, 3, 5\}) = 0.2, P(\{2, 4, 6\}) = 0.8$
Probability Axioms

- Axiom 1: for all event $E \in \mathcal{F}$, $P(E) \geq 0$
Probability Axioms

- Axiom 2: Always, $P(\emptyset) = 0, P(\Omega) = 1$

\[P(\Omega) = 1 \]
Probability Axioms

- Axiom 3: for disjoint events, \(P(E_1 \cup E_2) = P(E_1) + P(E_2) \)
Other Probability Laws

• Ex: non-disjoint events

\[P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \]
• **Q 1.1**: We toss a biased coin. If \(P(\text{heads}) = 0.7 \), then \(P(\text{tails}) = ? \)

• A. 0.4
• B. 0.3
• C. 0.6
• D. 0.5
Break & Quiz

• **Q 1.2**: There are exactly 3 candidates, A, B and C, for a presidential election. We know A has a 30% chance of winning, B has a 35% chance. What’s the probability that C wins?

 • A. 0.35
 • B. 0.23
 • C. 0.333
 • D. 0.8
Break & Quiz

• **Q 1.3:** What’s the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
 * A. 26/52
 * B. 4/52
 * C. 30/52
 * D. 28/52
Basics: Random Variables

• Really, functions
• Map outcomes to real values \(X : \Omega \rightarrow \mathbb{R} \)

• Why?
 – Sets are hard to work with
 – Real values are more convenient
Basics: CDF & PDF

• Can still work with probabilities:
 \[P(X = 3) := P(\{\omega : X(\omega) = 3\}) \]

• Cumulative Distribution Func. (CDF)
 \[F_X(x) := P(X \leq x) \]

• Density / mass function \(p_X(x) \)
Basics: **Expectation & Variance**

- Another advantage of RVs are "summaries"
- **Expectation:** \(E[X] = \sum_a a \times P(x = a) \)

 - The "average"
- **Variance:** \(Var[X] = E[(X - E[X])^2] \)

 - A measure of "spread"
- **Higher moments**
Basics: Joint Distributions

- Move from one variable to several
- Joint distribution: \(P(X = a, Y = b) \)
 - Allow us to work with **multiple** types of uncertainty
Basics: **Marginal Probability**

- Given a joint distribution \(P(X = a, Y = b) \)
 - Get the distribution in just one variable:
 \[
P(X = a) = \sum_b P(X = a, Y = b)
 \]
 - This is called the **marginal** distribution.
Basics: **Marginal Probability**

\[P(X = a) = \sum_b P(X = a, Y = b) \]

<table>
<thead>
<tr>
<th></th>
<th>Sunny</th>
<th>Cloudy</th>
<th>Rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>150/365</td>
<td>40/365</td>
<td>5/365</td>
</tr>
<tr>
<td>cold</td>
<td>50/365</td>
<td>60/365</td>
<td>60/365</td>
</tr>
</tbody>
</table>

\[
[P(\text{hot}), P(\text{cold})] = \left[\frac{195}{365}, \frac{170}{365} \right]
\]
Probability Tables

• Write our distributions as tables

<table>
<thead>
<tr>
<th></th>
<th>Sunny</th>
<th>Cloudy</th>
<th>Rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>150/365</td>
<td>40/365</td>
<td>5/365</td>
</tr>
<tr>
<td>cold</td>
<td>50/365</td>
<td>60/365</td>
<td>60/365</td>
</tr>
</tbody>
</table>

• # of entries? 6.
 – If we have n variables with k values, we get k^n entries
 – **Big!** For a 1080p screen, 12 bit color, size of table: $10^{7490589}$
 – No way of writing down all terms
Independence

- Independence between RVs:
 \[P(X, Y) = P(X)P(Y) \]

- Why useful? Go from \(k^n \) entries in a table to \(\sim kn \)
- Reduces joint distribution into product of marginal distributions
Conditional Probability

• For when we know something,

 \[P(X = a|Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)} \]

• Leads to **conditional independence**

 \[P(X, Y|Z) = P(X|Z)P(Y|Z) \]

Credit: Devin Soni
Chain Rule

• Apply repeatedly,

\[
P(A_1, A_2, \ldots, A_n) = P(A_1)P(A_2|A_1)P(A_3|A_2, A_1) \ldots P(A_n|A_{n-1}, \ldots, A_1)
\]

• Note: still big!

 – If some conditional independence, can factor!

 – Leads to probabilistic graphical models
Q 2.1: Back to our joint distribution table:

<table>
<thead>
<tr>
<th></th>
<th>Sunny</th>
<th>Cloudy</th>
<th>Rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>150/365</td>
<td>40/365</td>
<td>5/365</td>
</tr>
<tr>
<td>cold</td>
<td>50/365</td>
<td>60/365</td>
<td>60/365</td>
</tr>
</tbody>
</table>

What is the probability the temperature is hot given the weather is cloudy?

A. 40/365
B. 2/5
C. 3/5
D. 195/365
Q 2.2: Of a company’s employees, 30% have CS degrees and 6% have CS Ph.D. degrees. Suppose an employee is selected at random. If the employee selected has a CS degree, what is the probability that the employee has a Ph.D. degree?

A. 0.3
B. 0.06
C. 0.24
D. 0.2
Reasoning With Conditional Distributions

• Evaluating probabilities:
 – Wake up with a sore throat (S).
 – Do I have the flu (F)?

• One approach: \(S \rightarrow F \)
 – Too strong.

• **Inference**: compute probability given evidence \(P(F|S) \)
 – Can be much more complex!
Using Bayes’ Rule

- Want: $P(F|S)$
- **Bayes’ Rule:** $P(F|S) = \frac{P(F,S)}{P(S)} = \frac{P(S|F)P(F)}{P(S)}$
- **Parts:**
 - $P(S) = 0.1$ Sore throat rate
 - $P(F) = 0.01$ Flu rate
 - $P(S|F) = 0.9$ Sore throat rate among flu sufferers

So: $P(F|S) = 0.09$
Using Bayes’ Rule

• Interpretation $P(F|S) = 0.09$
 – Much higher chance of flu than normal rate (0.01).
 – Very different from $P(S|F) = 0.9$
 • 90% of folks with flu have a sore throat
 • But, only 9% of folks with a sore throat have flu

• Idea: **update** probabilities from evidence
Bayesian Inference

• Fancy name for what we just did. Terminology:

\[P(H|E) = \frac{P(E|H)P(H)}{P(E)} \]

• \(H \) is the hypothesis
• \(E \) is the evidence
Bayesian Inference

• Terminology:

\[P(H|E) = \frac{P(E|H)P(H)}{P(E)} \]

• Prior: estimate of the probability \textbf{without} evidence
Bayesian Inference

• Terminology:

\[P(H|E) = \frac{P(E|H)P(H)}{P(E)} \]

• Likelihood: probability of evidence \textit{given a hypothesis}.

- Likelihood
Bayesian Inference

• Terminology:

\[P(H|E) = \frac{P(E|H)P(H)}{P(E)} \]

• Posterior: probability of hypothesis \textit{given} evidence.
Two Envelopes Problem

• We have two envelopes:
 – E_1 has two black balls, E_2 has one black, one red
 – The red one is worth $100. Others, zero
 – Open an envelope, see one ball. Then, can switch (or not).
 – You see a black ball. **Switch**?
Two Envelopes Solution

• Let’s solve it.

\[P(E_1 | \text{Black ball}) = \frac{P(\text{Black ball} | E_1)P(E_1)}{P(\text{Black ball})} \]

• Now plug in:

\[P(E_1 | \text{Black ball}) = \frac{1 \times \frac{1}{2}}{P(\text{Black ball})} \]

\[P(E_2 | \text{Black ball}) = \frac{\frac{1}{2} \times \frac{1}{2}}{P(\text{Black ball})} \]

So switch!
Break & Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a non-spam email?

A. 5/104
B. 95/100
C. 1/100
D. 1/2
Break & Quiz

Q 3.2: A fair coin is tossed three times. Find the probability of getting 2 heads and a tail

A. 1/8
B. 2/8
C. 3/8
D. 5/8