
CS 540 Introduction to Artificial Intelligence
Linear Algebra & PCA

Yudong Chen
University of Wisconsin-Madison

Sep 14, 2021



Announcements

• HW1 Due next Tuesday
• Class roadmap:

Tuesday, Sep 14 Probability

Thursday, Sep 16 Linear Algebra and PCA

Tuesday, Sep 21 Statistics and Math 
Review

Thursday, Sep 23 Introduction to Logic

Tuesday, Sep 28 Natural Language 
Processing

Fundam
entals



From Last Time

• Conditional Prob. & Bayes: 

• Has more evidence. 
– Likelihood is hard---but conditional independence 

assumption



Classification

• Expression 

• H: some class we’d like to infer from evidence
– We know prior P(H)
– Estimate P(Ei|H) from data! (“training”)
– Very similar to envelopes problem. Part of HW2



Linear Algebra: What is it good for?

• Everything is a function
– With multiple inputs and outputs

• Linear functions
– Simple, tractable

• Study of linear functions



In AI/ML Context

Building blocks for all models
- E.g., linear regression; part of neural networks 

Stanford CS231nHieu Tran



Outline

• Basics: vectors, matrices, operations

• Dimensionality reduction

• Principal Components Analysis (PCA)
Lior Pachter



Basics: Vectors

Vectors
• Many interpretations 
– Physics: magnitude + direction

– Point in a space

– List of values (represents information)



• Dimension
– Number of values
– Higher dimensions: richer but more complex

• AI/ML: often use very high dimensions: 
– Ex: images!

Basics: Vectors

Cezanne Camacho



Basics: Matrices

• Again, many interpretations
– Represent linear transformations
– Apply to a vector, get another vector
– Also, list of vectors

• Not necessarily square
– Dimension: ! ∈ ℝ$×&
– Indexing: !'(



Basics: Transposition

• Transposes: flip rows and columns
– Vector: standard is a column. Transpose: row vector
– Matrix: go from m x n to n x m



Matrix & Vector Operations

• Vectors
– Addition: component-wise

• Commutative: ! + # = # + !
• Associative: ! + # + % = ! + (# + %)

– Scalar Multiplication
• Uniform stretch / scaling



Matrix & Vector Operations

• Vector products
– Inner product (e.g., dot product)

– Outer product



• Inner product defines “orthogonality”
– If 

• Vector norms: “size”

Matrix & Vector Operations



Matrix & Vector Operations

• Matrices:
– Addition: Component-wise
– Commutative! + Associative

– Scalar Multiplication
– “Stretching” the linear transformation 



Matrix & Vector Operations

• Matrix-Vector multiplication
– I.e., linear transformation; plug in vector, get another 

vector
– Each entry in !" is the inner product of a row of ! with "



Matrix & Vector Operations

Ex: feedforward neural networks. Input !. 
• Output of layer " is 

Output of layer k-1: vector

Weight matrix for layer k: 
Note: linear transformation!

Output of layer ": vector

nonlinearity

Wikipedia



Matrix & Vector Operations

• Matrix multiplication
– “Composition” of linear transformations
– Not commutative (in general)!

– Lots of interpretations

Wikipedia



More on Matrix Operations

• Identity matrix:
– Like “1”
– Multiplying by it gets back the 

same matrix or vector

– Columns are the “standard 
basis vectors” !"
• !" denotes a vector with 1 in the 
#-th position, and 0 elsewhere



Break & Quiz

• Q 1.1: What is                               ? 

• A. [-1 1 1]T

• B. [2 1 1]T

• C. [1 3 1]T

• D. [1.5 2 1]T
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Break & Quiz
• Q 1.2: Given matrices
What are the dimensions of 

• A. n x p
• B. d x p
• C. d x n
• D. Undefined
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Break & Quiz
• Q 1.3: A and B are matrices, neither of which is the 

identity matrix. Is AB = BA?

• A. Never
• B. Always
• C. Sometimes
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More on Matrices: Inverses

• If for A there is a B such that
– Then A is invertible/nonsingular, B is the inverse of A
– Some matrices are not invertible!

– Usual notation:

– Only talk about inverse
for square matrices 



Eigenvalues & Eigenvectors

• For a square matrix !, solutions to
– " (nonzero) is a vector: eigenvector
– # is a scalar: eigenvalue

– Intuition: ! is a linear transformation
– In general can stretch/rotate vectors
– E-vectors: only stretched (by e-vals)

Wikipedia



Dimensionality Reduction

• Vectors used to store features
– Lots of data -> lots of features!

• Ex: Document classification
– Each doc: thousands of words/millions of bigrams, etc



Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points 
x 20 objects



Dimensionality Reduction

Reduce dimensions
• Why? 
– Lots of features redundant 
– Storage & computation costs

• Goal: take                                          for   
– But, minimize information loss

CreativeBloq



Compression

Examples: 3D to 2D

Andrew Ng



Break & Quiz
Q 2.1: What is the inverse of 

A. :

B. :

C. Undefined / A is not invertible



Break & Quiz
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Break & Quiz
Q 2.2: What are the eigenvalues of 

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1
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Break & Quiz
Q 2.3: Suppose we are given a dataset with n=10000 
samples with 100-dimensional binary feature vectors. Our 
storage device has a capacity of 50000 bits. What’s the 
lower compression ratio we can use?
A. 20X
B. 100X
C. 5X
D. 1X
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Principal Components Analysis (PCA)

• A type of dimensionality reduction approach
– For when data is approximately lower dimensional



Principal Components Analysis (PCA)

• Goal: find axes of a subspace
– Will project to this subspace; want to preserve data



Principal Components Analysis (PCA)

• From 2D to 1D:
– Find a !" ∈ ℝ% so that we maximize “variability” along !"

– New representations are along this vector (1D!)



Principal Components Analysis (PCA)

• From d dimensions to r dimensions:
– Sequentially get                                     (the axes)
– Orthogonal!
– Still minimize the projection error

• Equivalent to “maximizing variability”

– The vectors are the principal components



PCA Setup

• Inputs
– Data: 
– Can arrange into 

– Centered!

• Outputs
– Principal components 
– Orthogonal!



PCA Goals

• Want directions/components (unit vectors) so that
– Projecting data maximizes variance

!
"#$

%
&, (" ) = +& )

• Do this recursively
– Get orthogonal directions



PCA First Step

• First component,

• Same as



PCA Recursion

• Once we have k-1 components, next?

• Then do the same thing Deflation



PCA Interpretations

• The v’s are eigenvectors of XTX 

• XTX (proportional to) sample covariance matrix
– When data is 0 mean!
– I.e., PCA is eigendecomposition of sample covariance

• Nested subspaces span(v1), span(v1,v2),…,



Lots of Variations

• PCA, Kernel PCA, ICA, CCA
– Unsupervised techniques to extract structure from high 

dimensional dataset
• Used for:
– Visualization
– Efficiency
– Noise removal
– Downstream machine learning use

STHDA



Application: Image Compression

• Original image:

• Divide into 12x12 patches
– Each patch is a 144-D vector



Application: Image Compression

• 6 most important components (as an image)
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Application: Image Compression

• Project to 6D, 

Compressed Original


