CS 540 Introduction to Artificial Intelligence
Linear Algebra & PCA
Yudong Chen
University of Wisconsin-Madison

Sep 14, 2021
Announcements

- HW1 Due next Tuesday
- Class roadmap:

<table>
<thead>
<tr>
<th>Date, Month</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, Sep 14</td>
<td>Probability</td>
</tr>
<tr>
<td>Thursday, Sep 16</td>
<td>Linear Algebra and PCA</td>
</tr>
<tr>
<td>Tuesday, Sep 21</td>
<td>Statistics and Math Review</td>
</tr>
<tr>
<td>Thursday, Sep 23</td>
<td>Introduction to Logic</td>
</tr>
<tr>
<td>Tuesday, Sep 28</td>
<td>Natural Language Processing</td>
</tr>
</tbody>
</table>
From Last Time

• Conditional Prob. & Bayes:

\[P(H|E_1, E_2, \ldots, E_n) = \frac{P(E_1, \ldots, E_n|H)P(H)}{P(E_1, E_2, \ldots, E_n)} \]

• Has more evidence.
 – Likelihood is hard---but **conditional independence assumption**

\[P(H|E_1, E_2, \ldots, E_n) = \frac{P(E_1|H)P(E_2|H) \cdots P(E_n|H)P(H)}{P(E_1, E_2, \ldots, E_n)} \]
Classification

• Expression

\[P(H|E_1, E_2, \ldots, E_n) = \frac{P(E_1|H)P(E_2|H) \cdots P(E_n|H)P(H)}{P(E_1, E_2, \ldots, E_n)} \]

• \(H \): some class we’d like to infer from evidence
 – We know prior \(P(H) \)
 – Estimate \(P(E_i|H) \) from data! (“training”)
 – Very similar to envelopes problem. **Part of HW2**
Linear Algebra: What is it good for?

• Everything is a function
 – With multiple inputs and outputs

• Linear functions
 – Simple, tractable

• Study of linear functions
In AI/ML Context

Building blocks for **all models**
- E.g., linear regression; part of neural networks

![Diagram showing linear regression and neural network models](image-url)
Outline

• Basics: vectors, matrices, operations

• Dimensionality reduction

• Principal Components Analysis (PCA)
Basics: Vectors

Vectors

• Many interpretations
 – Physics: magnitude + direction
 – Point in a space
 – List of values (represents information)
Basics: Vectors

• Dimension
 – Number of values \(x \in \mathbb{R}^d \)
 – Higher dimensions: richer but more complex

• AI/ML: often use very high dimensions:
 – Ex: images!

Cezanne Camacho
Basics: Matrices

• Again, many interpretations
 – Represent linear transformations
 – Apply to a vector, get another vector
 – Also, list of vectors

• Not necessarily square
 – Dimension: $A \in \mathbb{R}^{c \times d}$
 – Indexing: A_{ij}

\[
A = \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix}
\]
Basics: Transposition

• Transposes: flip rows and columns
 – Vector: standard is a column. Transpose: row vector
 – Matrix: go from $m \times n$ to $n \times m$

$$ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} $$

$$ A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \quad A^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \\ A_{13} & A_{23} \end{bmatrix} $$
Matrix & Vector Operations

• Vectors
 – Addition: component-wise
 • Commutative: $x + y = y + x$
 • Associative: $x + y + z = x + (y + z)$

 $$x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

 – Scalar Multiplication
 • Uniform stretch / scaling

 $$cx = \begin{bmatrix} cx_1 \\ cx_2 \\ cx_3 \end{bmatrix}$$
Matrix & Vector Operations

• Vector products
 – Inner product (e.g., dot product)
 \[
 \langle x, y \rangle := x^T y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3
 \]
 – Outer product
 \[
 xy^T = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 y_1 & x_3 y_2 & x_3 y_3 \end{bmatrix}
 \]
Matrix & Vector Operations

• Inner product defines “orthogonality”
 – If $\langle x, y \rangle = 0$

• Vector norms: “size”

$$\|x\|_2 = \sqrt{\sum_{i=1}^{n} x_i^2}$$
Matrix & Vector Operations

• Matrices:
 – Addition: Component-wise
 – **Commutative!** + Associative

\[
A + B = \begin{bmatrix}
A_{11} + B_{11} & A_{12} + B_{12} \\
A_{21} + B_{21} & A_{22} + B_{22} \\
A_{31} + B_{31} & A_{32} + B_{32}
\end{bmatrix}
\]

– Scalar Multiplication
 – “Stretching” the linear transformation

\[
cA = \begin{bmatrix}
cA_{11} & cA_{12} \\
cA_{21} & cA_{22} \\
cA_{31} & cA_{32}
\end{bmatrix}
\]
Matrix & Vector Operations

• Matrix-Vector multiplication
 – I.e., linear transformation; plug in vector, get another vector
 – Each entry in Ax is the inner product of a row of A with x

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \ldots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \ldots + A_{2n}x_n \\ \vdots \\ A_{n1}x_1 + A_{n2}x_2 + \ldots + A_{nn}x_n \end{bmatrix}$$
Matrix & Vector Operations

- Output of layer k is

$$f^{(k)}(x) = \sigma(W_k^T f^{(k-1)}(x)))$$

Note: linear transformation!

Output of layer k: vector

Output of layer $k-1$: vector

Weight matrix for layer k: vector

Wikipedia
Matrix & Vector Operations

• Matrix multiplication
 – “Composition” of linear transformations
 – Not commutative (in general)!
 – Lots of interpretations
More on Matrix Operations

• Identity matrix:
 – Like “1”
 – Multiplying by it gets back the same matrix or vector
 – Columns are the “standard basis vectors” e_i
 - e_i denotes a vector with 1 in the i-th position, and 0 elsewhere

$$I = \begin{bmatrix} 1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1 \end{bmatrix}$$
Break & Quiz

Q 1.1: What is $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$?

A. $[-1 \ 1 \ 1]^T$
B. $[2 \ 1 \ 1]^T$
C. $[1 \ 3 \ 1]^T$
D. $[1.5 \ 2 \ 1]^T$
• Q 1.2: Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{d \times m}, C \in \mathbb{R}^{p \times n}$. What are the dimensions of BAC^T?

• A. $n \times p$
• B. $d \times p$
• C. $d \times n$
• D. Undefined
Break & Quiz

• **Q 1.3**: A and B are matrices, neither of which is the identity matrix. Is $AB = BA$?

• A. Never
• B. Always
• C. Sometimes
More on Matrices: Inverses

• If for A there is a B such that $AB = BA = I$
 – Then A is invertible/nonsingular, B is the inverse of A
 – Some matrices are not invertible!

– Usual notation: A^{-1}

– Only talk about inverse for square matrices

\[
\begin{bmatrix}
1 & 1 \\
2 & 3
\end{bmatrix} \times \begin{bmatrix}
3 & -1 \\
-2 & 1
\end{bmatrix} = I
\]
Eigenvalues & Eigenvectors

- For a square matrix A, solutions to $A\mathbf{v} = \lambda \mathbf{v}$
 - \mathbf{v} (nonzero) is a vector: **eigenvector**
 - λ is a scalar: **eigenvalue**
- Intuition: A is a linear transformation
- In general can stretch/rotate vectors
- E-vectors: only stretched (by e-vals)
Dimensionality Reduction

• Vectors used to store features
 – Lots of data -> lots of features!

• Ex: Document classification
 – Each doc: thousands of words/millions of bigrams, etc
Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points x 20 objects
Dimensionality Reduction

Reduce dimensions

• Why?
 – Lots of features redundant
 – Storage & computation costs

• Goal: take $x \in \mathbb{R}^d \rightarrow x \in \mathbb{R}^r$ for $r \ll d$
 – But, minimize information loss
Compression

Examples: 3D to 2D

Andrew Ng
Break & Quiz

Q 2.1: What is the inverse of
\[A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix} \]

A. \[A^{-1} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix} \]

B. \[A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix} \]

C. Undefined / \(A \) is not invertible
Break & Quiz

Q 2.2: What are the eigenvalues of \(A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1
Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What’s the lower compression ratio we can use?

A. 20X
B. 100X
C. 5X
D. 1X
Principal Components Analysis (PCA)

• A type of dimensionality reduction approach
 – For when data is *approximately* lower dimensional
Principal Components Analysis (PCA)

• Goal: find **axes** of a subspace
 – Will project to this subspace; want to preserve data

\[D = 2 \]
\[d = 1 \]
\[D = 3 \]
\[d = 2 \]
Principal Components Analysis (PCA)

• From 2D to 1D:
 – Find a $v_1 \in \mathbb{R}^d$ so that we maximize “variability” along v_1
 – New representations are along this vector (1D!)
Principal Components Analysis (PCA)

• From \(d\) dimensions to \(r\) dimensions:
 – Sequentially get \(v_1, v_2, \ldots, v_r \in \mathbb{R}^d\) (the axes)
 – Orthogonal!
 – Still minimize the projection error
 • Equivalent to “maximizing variability”

 – The vectors are the principal components
PCA Setup

• **Inputs**
 – Data: $x_1, x_2, \ldots, x_n, \, x_i \in \mathbb{R}^d$
 – Can arrange into $X \in \mathbb{R}^{n \times d}$
 – **Centered**! $\frac{1}{n} \sum_{i=1}^{n} x_i = 0$

• **Outputs**
 – Principal components $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 – Orthogonal!
PCA Goals

• Want directions/components (unit vectors) so that
 – Projecting data maximizes variance
 \[\sum_{i=1}^{n} \langle v, x_i \rangle^2 = \|Xv\|^2 \]

• Do this recursively
 – Get orthogonal directions \(v_1, v_2, \ldots, v_r \in \mathbb{R}^d \)
PCA First Step

• First component,

\[v_1 = \arg \max_{\|v\|=1} \sum_{i=1}^{n} \langle v, x_i \rangle^2 \]

• Same as

\[v_1 = \arg \max_{\|v\|=1} \|Xv\|^2 \]
PCA Recursion

• Once we have $k-1$ components, next?

$$\hat{X}_k = X - \sum_{i=1}^{k-1} X v_i v_i^T$$

• Then do the same thing

$$v_k = \arg \max_{\|v\|=1} \|\hat{X}_k v\|^2$$
PCA Interpretations

- The v’s are eigenvectors of X^TX

- X^TX (proportional to) sample covariance matrix
 - When data is 0 mean!
 - I.e., PCA is eigendecomposition of sample covariance

- Nested subspaces $span(v1)$, $span(v1,v2)$,...,
Lots of Variations

- PCA, Kernel PCA, ICA, CCA
 - Unsupervised techniques to extract structure from high dimensional dataset

- Used for:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use
Application: Image Compression

• Original image:

• Divide into 12x12 patches
 – Each patch is a 144-D vector
Application: Image Compression

- 6 most important components (as an image)
Application: Image Compression

- Project to 6D,