

CS 540 Introduction to Artificial Intelligence Statistics & Math Review

Yudong Chen University of Wisconsin-Madison

Sep 21, 2021

Announcements

- Homeworks:
 - HW2 due Tuesday---get started early!
- Class roadmap:

Tuesday, Sep 14	Probability		т
Thursday, Sep 16	Linear Algebra and PCA		und
Tuesday, Sep 21	Statistics and Math Review		ament
Thursday, Sep 23	Introduction to Logic		tals
Tuesday, Sep 28	Natural Language Processing		

Outline

• Finish last lecture: PCA

• Review of probability

• Statistics: sampling & estimation

Principal Components Analysis (PCA)

- A type of dimensionality reduction approach
 - For when data is approximately lower dimensional
- Goal: find a low-dimensional subspace
 - Will project to this subspace; want to minimize loss of information

Principal Components Analysis (PCA)

• From 2D to 1D: – Find a $v_1 \in \mathbb{R}^d$ so that we maximize "variability"

- New representations are along this vector (1D!)

Principal Components Analysis (PCA)

- From *d* dimensions to *r* dimensions:
 - Sequentially get orthogonal vectors $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 - Maximize variability when projecting to them
 - The vectors are the principal components

PCA Setup

• Inputs

- Data:
$$x_1, x_2, \ldots, x_n, x_i \in \mathbb{R}^d$$

– Can arrange into $X \in \mathbb{R}^{n \times d}$

- Centered!
$$\frac{1}{n}\sum_{i=1}^n x_i = 0$$

- Outputs
 - $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$ (principle components, orthogonal)

PCA Setup

- Want directions (unit vectors) so that projecting data maximizes variance
 - What's projection? To project *a* onto unit vector *b*,

$$\langle a,b\rangle b \longleftarrow$$
 Direction
Length

– Variance of projection:

$$\sum_{i=1}^{n} \langle x_i, v \rangle^2 = \|Xv\|^2$$

PCA First Step

• First component:

$$v_1 = \arg \max_{\|v\|=1} \sum_{i=1}^n \langle v, x_i \rangle^2$$
$$= \arg \max_{\|v\|=1} \|Xv\|^2$$

PCA: *k*th step

• Once we have *k*-1 components, compute

$$\hat{X}_k = X - \sum_{i=1}^{k-1} X v_i v_i^T$$

Deflation

7

• Then do the same thing

$$v_k = \arg \max_{\|v\|=1} \|\hat{X}_k w\|^2$$

• Deflation ensures v_k is orthogonal to v_1, \dots, v_{k-1}

PCA: Connection to Eigenvectors

• v_k is the k^{th} eigenvector of $\frac{1}{n}X^TX$

Proof: linear algebra! (omitted)

- $\frac{1}{n}X^T X \in \mathbb{R}^{d \times d}$ is sample covariance matrix of data
 - When data is centered (has 0 mean)
- PCA can be done via eigendecomposition of sample covariance

Application: Image Compression

• Start with image; divide into 12x12 patches

- I.E., 144-D vector

- Original image:

Application: Image Compression

• 6 most important components (as an image)

Application: Image Compression

• Project to 6D,

Compressed

Original

Q 1.1: What is the projection of $[1 \ 2]^T$ onto $[0 \ 1]^T$?

- A. [1 2][⊤]
- B. [-1 1][⊤]
- C. [0 0][⊤]
- D. [0 2][⊤]

Q 1.1: What is the projection of $[1 \ 2]^T$ onto $[0 \ 1]^T$?

- A. [1 2]^T
- B. [-1 1][⊤]
- C. [0 0][⊤]
- D. [0 2]^T

Q 1.2: We wish to run PCA on 10-dimensional data in order to produce *r*-dimensional representations. Which is the most accurate (least loss of information)?

- A. *r* = 3
- B. *r* = 9
- C. *r* = 10
- D. *r* = 20

Q 1.2: We wish to run PCA on 10-dimensional data in order to produce *r*-dimensional representations. Which is the most accurate (least loss of information)?

- A. *r* = 3
- B. *r* = 9
- C. *r* = 10
- D. *r* = 20

Probability Review: Outcomes & Events

- Outcomes: possible results of an **experiment**
- Events: subsets of outcomes we're interested in

Ex:
$$\Omega = \{\underbrace{1, 2, 3, 4, 5, 6}_{\text{outcomes}}$$

 $\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega\}$
events

Review: Probability Distribution

- We have outcomes and events.
- Now assign probabilities For $E \in \mathcal{F}, P(E) \in [0,1]$

Back to our example:

$$\mathcal{F} = \underbrace{\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}}_{\text{events}}$$

$$P(\{1, 3, 5\}) = 0.2, P(\{2, 4, 6\}) = 0.8$$

Review: Random Variables

- Map outcomes to real values $X: \Omega \to \mathbb{R}$
- Probabilities for a random variable:

$$P(X = 3) := P(\{\omega : X(\omega) = 3\})$$

• Cumulative Distribution Function (CDF) $F_X(x) := P(X \le x)$

Review: Random Variables

- Back to our example: $\mathcal{F} = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}$ $P(\{1, 3, 5\}) = 0.2, P(\{2, 4, 6\}) = 0.8$
- Consider random variable: $X(\omega) = \begin{cases} 1, & \omega = 1,3,5 \\ 0, & \omega = 2,4,6 \end{cases}$
- $P(X = 1) = P(\{\omega : X(\omega) = 1\}) = P(\{1,3,4\}) = 0.2$
- P(X = 0) = 0.8
- CDF $F_X(x)$?

Review: Expectation & Variance

• Expectation: $E[X] = \sum_{a} a \times P(x = a)$ - The "average"

- Variance: $Var[X] = E[(X E[X])^2]$
 - A measure of spread

Review: Conditional Probability

• For when we know something,

$$P(X = a | Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$

Credit: Devin Soni

• Conditional independence P(X, Y|Z) = P(X|Z)P(Y|Z)

Review: Bayes Rule

• Bayes rule: Posterior $P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1, \dots, E_n | H) P(H)}{P(E_1, E_2, \dots, E_n)}$

Assuming conditional independence:

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

Review: Classification

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

- Called Naïve Bayes Classifier
 - HW2: applied to document classification
- *H*: some class we'd like to infer from evidence E_1, \ldots, E_n
 - Estimate prior P(H) from data
 - Estimate likelihood $P(E_i|H)$ from data
 - How?

Samples and Estimation

- Usually, we don't know the distribution P
 - Instead, we see a bunch of samples

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(H)
 - Estimate the mean E[X]
 - Estimate parameters $P_{\theta}(X)$

Samples and Estimation

- Typical statistics problem: estimate parameters from samples
 - Estimate probability P(H)
 - Estimate the mean E[X]
 - Estimate parameters $P_{\theta}(X)$
- Example: Bernoulli with parameter p

$$-p = E[X] = P(X = 1)$$

Examples: Sample Mean

- Bernoulli with parameter/mean *p*
- See samples x_1, x_2, \ldots, x_n
 - Estimate mean with sample mean

$$\hat{\mathbb{E}}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Counting heads

- **Q 2.1:** You see samples of X given by [0,1,1,2,2,0,1,2]. Empirically estimate $E[X^2]$
- A. 9/8
- B. 15/8
- C. 1.5
- D. There aren't enough samples to estimate $E[X^2]$

- **Q 2.1:** You see samples of X given by [0,1,1,2,2,0,1,2]. Empirically estimate $E[X^2]$
- A. 9/8
- B. 15/8
- C. 1.5

D. There aren't enough samples to estimate $E[X^2]$

Q 2.2: You are empirically estimating P(X) for some random variable X that takes on 100 values. You see 50 samples. How many of your P(X=a) estimates might be 0?

A. None.

- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- D. Between 50 and 99, inclusive.

Q 2.2: You are empirically estimating P(X) for some random variable X that takes on 100 values. You see 50 samples. How many of your P(X=a) estimates might be 0?

A. None.

- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- D. Between 50 and 99, inclusive.

Estimation Theory

- Is sample mean is a good estimate of true mean?
 - Law of large numbers: $\widehat{\mathbb{E}}[X] \xrightarrow{n \to \infty} \mathbb{E}[X]$
 - Central limit theorem: limit distribution of $\widehat{\mathbb{E}}[X]$
 - Concentration inequalities
 - $P(|\mathbb{E}[X] \hat{\mathbb{E}}[X]| \ge t) \le \exp(-2nt^2)$
- Covered in advanced ML/stat courses

Wolfram Demo