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Announcements

* Homeworks:
— HW2 due Tuesday---get started early!

e Class roadmap:

Tuesday, Sep 14 Probability

Thursday, Sep 16 Linear Algebra and PCA
Thursday, Sep 23 Introduction to Logic
Tuesday, Sep 28 Natural Language

Processing

|

—

s|euswepuny



Outline

O Basal

|:| LumA

<> LumB

() ERBB2

O Normal

/\ Unclassified
|:| Group A

O Group B

* Review of probability AR

 Finish last lecture: PCA

“OEr+

e Statistics: sampling & estimation

b) ELMAP2D c) PCA2ZD

Wikipedia



Principal Components Analysis (PCA)

* Atype of dimensionality reduction approach

— For when data is approximately lower dimensional

* Goal: find a low-dimensional subspace

— Will project to this subspace; want to minimize loss of information




Principal Components Analysis (PCA)

* From 2D to 1D:

— Finda v € R%  sothat we maximize “variability”

— New representations are along this vector (1D!)



Principal Components Analysis (PCA)

From d dimensions to r dimensions:
— Sequentially get orthogonal vectors v, vs,...,v, € NG
— Maximize variability when projecting to them

— The vectors are the principal
components
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PCA Setup

* [Inputs
— Data: 1,29,...,Tp, T; € R
— Canarrangeinto X € R™Xd

1 n
— Centered! - z;g;z — (0
1=

* Outputs
Rd
— V1,V2,...,Up €

(principle components, orthogonal)




PCA Setup

 Want directions (unit vectors) so that projecting data
maximizes variance

— What'’s projection? To project a onto unit vector b,
<a, b>b — Direction

Length

— Variance of projection:
n

D fwi,v)? = Xv|?

1=1

Paolo.dL



PCA First Step

* First component:

— arg max || Xv||”
|v]l=1



PCA: kth step

* Once we have k-1 components, compute
k—1
> T
Xp=X-) Xuvv,
i=1 ™~

Deflation
* Then do the same thing

v, = arg max || Xzwl|?
lvfl=1

* Deflation ensures vy, is orthogonal to vy, ..., Vj_1



PCA: Connection to Eigenvectors

. . 1
* v isthe kt eigenvector of ;XTX

— Proof: linear algebra! (omitted)

1 . . .
. ;XTX € R%*? js sample covariance matrix of data

— When data is centered (has 0 mean)

 Therefore, PCA can be done via eigendecomposition
of sample covariance



Application: Image Compression

Original image:

Divide into 12x12 patches
Each patch is a 144-D vector x; |
Want to reduce to 6-D




Application: Image Compression

* 6 most important components (as an image)
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Application: Image Compression

* Project to 6D,

S
o L

Compressed Original



Break & Quiz

Q 1.1: What is the projection of [1 2]"onto [0 1]T ?

A.[12]
e B.[-11]
C.[00]"
D. [0 2]




Break & Quiz

Q 1.2: We wish to run PCA on 10-dimensional data in order
to produce r-dimensional representations. Which is the
most accurate (least loss of information)?

e A.r=3
* B.r=9
e C.r=10

* D.r=20



Probability Review: Outcomes & Events

e Qutcomes: possible results of an experiment
* Events: subsets of outcomes we’re interested in

Ex: Q=1{1,2,3,4,5,6}

VO
outcomes

F={0.41},{2},....{1.2}..... 0}

events




Review: Probability Distribution

* We have outcomes and events.
* Now assign probabilities For £ € F, P(E) € [0,1]

Back to our example:
JF = {@7 {17 37 5}7 {27 47 6}’ Q}
evgts

P({1,3,5}) = 0.2, P({2,4,6}) = 0.8




Review: Random Variables

* Map outcomestorealvalues X : Q) - R
* Probabilities for a random variable:

P(X =3):= P({w: X(w) = 3))

* Cumulative Distribution Function (CDF)
Fx(z) = P(X <)



Review: Random Variables

Back to our example: F ={0,{1,3,5},{2,4,6},Q}
P({1,3,5}) =0.2,P({2,4,6}) = 0.8

1, w=173,5

Consider random variable: X(w) = {O w=246

P(X=1) = P{w:X(w) =1}) = P({1,3,5}) = 0.2
P(X =0) = 0.8
CDF Fy (x) ?



Review: Expectation & Variance

* Expectation: E|X] =) _ax P(z=a)

— The “average”

* Variance: Var[X] = E[(X — E[X])?]

— A measure of spread



Review: Conditional Probability

* For when we know something,

P(X =a,Y =)

P(X =alY =b) = PY =)

e Conditional independence
P(X,Y|Z)=P(X|Z)P(Y|Z)

Credit: Devin Soni



Review: Bayes Rule

* Bayes ruIe: Likelihood Prior

Posterior
P(Es,...,E,|H)P(H)
P(H|Ey, B, ..., Ey) = P(Ey, By, ..., Ep)

* Assuming conditional independence:

_ P(EA|H)P(Ey|H)- -, P(E,|H)P(H)

P(H‘El,EQ,,En)_ P(El E2 E)



Review: Classification

_ P(E\[H)P(Ey|H) - , P(E,|H)P(H)

P(H|E,, B, ..., Ey) = P(Ey, E,...,E,)

* (Called Naive Bayes Classifier
— HW2: applied to document classification

* H:some class we’d like to infer from evidence Ej, ..., E,

— Estimate prior P(H) from data
— Estimate likelihood P(E;|H) from data
— How?



Samples and Estimation

e Usually, we don’t know the distribution P
— Instead, we see a bunch of samples

e Typical statistics problem: estimate
parameters from samples
— Estimate probability P(H)
— Estimate the mean F[X]
— Estimate parameters [ (X)




Samples and Estimation

e Typical statistics problem: estimate
parameters from samples

— Estimate probability P(H)
— Estimate the mean E[X]
— Estimate parameters PQ(X)

* Example: Bernoulli with parameter p
-p=EX]=PX=1)




Examples: Sample Mean

* Bernoulli with parameter/mean p
 Seesamples x1,22,...,Zn,

— Estimate mean with sample mean

— Counting heads



Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate E[X?]

A. 9/8

B. 15/8

C. 15

D. There aren’t enough samples to estimate E[X?]



Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0?

None.

Between 5 and 50, exclusive.
Between 50 and 100, inclusive.
Between 50 and 99, inclusive.

o0 wp



Estimation Theory

* |s sample mean is a good estimate of true mean?

n—>00

— Law of large numbers: E[X] — E[X]
— Central limit theorem: limit distribution of E[X]

— Concentration inequalities

P(E[X]) ~ BIX]| > 1) < exp(~2nf?)

e Covered in advanced ML/stat

courses

Wolfram Demo



