CS 540 Introduction to Artificial Intelligence
Statistics & Math Review

Yudong Chen
University of Wisconsin-Madison

Sep 21, 2021
Announcements

• **Homeworks:**
 – HW2 due Tuesday---get started early!

• **Class roadmap:**

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, Sep 14</td>
<td>Probability</td>
</tr>
<tr>
<td>Thursday, Sep 16</td>
<td>Linear Algebra and PCA</td>
</tr>
<tr>
<td>Tuesday, Sep 21</td>
<td>Statistics and Math Review</td>
</tr>
<tr>
<td>Thursday, Sep 23</td>
<td>Introduction to Logic</td>
</tr>
<tr>
<td>Tuesday, Sep 28</td>
<td>Natural Language Processing</td>
</tr>
</tbody>
</table>
Outline

• Finish last lecture: PCA

• Review of probability

• Statistics: sampling & estimation
Principal Components Analysis (PCA)

• A type of dimensionality reduction approach
 – For when data is *approximately lower dimensional*
• Goal: find a low-dimensional subspace
 – Will project to this subspace; want to minimize loss of information
Principal Components Analysis (PCA)

• From 2D to 1D:
 – Find a \(u_1 \in \mathbb{R}^d \) so that we maximize “variability”
 – New representations are along this vector (1D!)
Principal Components Analysis (PCA)

- From d dimensions to r dimensions:
 - Sequentially get orthogonal vectors $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 - Maximize variability when projecting to them
 - The vectors are the **principal components**
PCA Setup

• **Inputs**

 – Data: \(x_1, x_2, \ldots, x_n, \ x_i \in \mathbb{R}^d \)

 – Can arrange into \(X \in \mathbb{R}^{n \times d} \)

 – **Centered!**
 \[
 \frac{1}{n} \sum_{i=1}^{n} x_i = 0
 \]

• **Outputs**

 – \(v_1, v_2, \ldots, v_r \in \mathbb{R}^d \)

 (principle components, orthogonal)
PCA Setup

• Want directions (unit vectors) so that projecting data maximizes variance
 – What’s projection? To project a onto unit vector b,
 \[
 \langle a, b \rangle b \quad \text{Direction}
 \]
 \[
 \text{Length}
 \]
 – Variance of projection:
 \[
 \sum_{i=1}^{n} \langle x_i, v \rangle^2 = \| X v \|^2
 \]
PCA First Step

• First component:

$$v_1 = \arg \max_{\|v\| = 1} \sum_{i=1}^{n} \langle v, x_i \rangle^2$$

$$= \arg \max_{\|v\| = 1} \|Xv\|^2$$
PCA: k^{th} step

- Once we have $k-1$ components, compute

$$\hat{X}_k = X - \sum_{i=1}^{k-1} X v_i v_i^T$$

- Then do the same thing

$$v_k = \arg \max_{\|v\|=1} \|\hat{X}_k w\|^2$$

- Deflation ensures v_k is orthogonal to v_1, \ldots, v_{k-1}
PCA: Connection to Eigenvectors

• \(\nu_k \) is the \(k^{th} \) eigenvector of \(\frac{1}{n} X^T X \)
 – Proof: linear algebra! (omitted)

\[
\frac{1}{n} X^T X \in \mathbb{R}^{d \times d}
\]

• \(\frac{1}{n} X^T X \in \mathbb{R}^{d \times d} \) is sample covariance matrix of data
 – When data is centered (has 0 mean)

• Therefore, PCA can be done via eigendecomposition of sample covariance
Application: Image Compression

- Original image:
- Divide into 12x12 patches
- Each patch is a 144-D vector x_i
- Want to reduce to 6-D
Application: Image Compression

- 6 most important components (as an image)
Application: Image Compression

- Project to 6D,
Q 1.1: What is the projection of $[1 \ 2]^T$ onto $[0 \ 1]^T$?

• A. $[1 \ 2]^T$
• B. $[-1 \ 1]^T$
• C. $[0 \ 0]^T$
• D. $[0 \ 2]^T$
Q 1.2: We wish to run PCA on 10-dimensional data in order to produce r-dimensional representations. Which is the most accurate (least loss of information)?

- A. $r = 3$
- B. $r = 9$
- C. $r = 10$
- D. $r = 20$
Probability Review: Outcomes & Events

- **Outcomes**: possible results of an experiment
- **Events**: subsets of outcomes we’re interested in

Ex: $\Omega = \{1, 2, 3, 4, 5, 6\}$

$F = \{\emptyset, \{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \Omega\}$
Review: Probability Distribution

• We have outcomes and events.
• Now assign probabilities

Back to our example:

\[\mathcal{F} = \{ \emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega \} \]

\[P(\{1, 3, 5\}) = 0.2, \quad P(\{2, 4, 6\}) = 0.8 \]
Review: Random Variables

• Map outcomes to real values \(X : \Omega \rightarrow \mathbb{R} \)

• Probabilities for a random variable:

\[
P(X = 3) := P(\{\omega: X(\omega) = 3\})
\]

• Cumulative Distribution Function (CDF)

\[
F_X(x) := P(X \leq x)
\]
Review: Random Variables

• Back to our example: \(\mathcal{F} = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\} \)

\[
P(\{1, 3, 5\}) = 0.2, \ P(\{2, 4, 6\}) = 0.8
\]

• Consider random variable: \(X(\omega) = \begin{cases} 1, & \omega = 1, 3, 5 \\ 0, & \omega = 2, 4, 6 \end{cases} \)

• \(P(X = 1) = P(\{\omega: X(\omega) = 1\}) = P(\{1, 3, 5\}) = 0.2 \)

• \(P(X = 0) = 0.8 \)

• CDF \(F_X(x) \)?
Review: Expectation & Variance

• Expectation: \(E[X] = \sum_a a \times P(x = a) \)

 – The “average”

• Variance: \(Var[X] = E[(X - E[X])^2] \)

 – A measure of spread
Review: Conditional Probability

• For when we know something,

\[P(X = a | Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)} \]

• Conditional independence

\[P(X, Y | Z) = P(X | Z)P(Y | Z) \]
Review: Bayes Rule

• Bayes rule:

\[
P(H|E_1, E_2, \ldots, E_n) = \frac{P(E_1, \ldots, E_n|H)P(H)}{P(E_1, E_2, \ldots, E_n)}
\]

• Assuming conditional independence:

\[
P(H|E_1, E_2, \ldots, E_n) = \frac{P(E_1|H)P(E_2|H) \cdots P(E_n|H)P(H)}{P(E_1, E_2, \ldots, E_n)}
\]
Review: Classification

\[P(H|E_1, E_2, \ldots, E_n) = \frac{P(E_1|H)P(E_2|H) \cdots P(E_n|H)P(H)}{P(E_1, E_2, \ldots, E_n)} \]

- **Called** Naïve Bayes Classifier
 - HW2: applied to document classification
- **H**: some class we’d like to infer from evidence \(E_1, \ldots, E_n \)
 - Estimate prior \(P(H) \) from data
 - Estimate likelihood \(P(E_i|H) \) from data
 - How?
Samples and Estimation

• Usually, we don’t know the distribution P
 – Instead, we see a bunch of samples

• Typical statistics problem: **estimate parameters** from samples
 – Estimate probability $P(H)$
 – Estimate the mean $E[X]$
 – Estimate parameters $P_\theta(X)$
Samples and Estimation

• Typical statistics problem: estimate parameters from samples
 – Estimate probability $P(H)$
 – Estimate the mean $E[X]$
 – Estimate parameters $P_\theta(X)$

• Example: Bernoulli with parameter p
 – $p = E[X] = P(X = 1)$
Examples: Sample Mean

• Bernoulli with parameter/mean p

• See samples x_1, x_2, \ldots, x_n

 – Estimate mean with **sample mean**

 $$\hat{E}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 – Counting heads
Break & Quiz

Q 2.1: You see samples of X given by $[0,1,1,2,2,0,1,2]$. Empirically estimate $E[X^2]$

A. 9/8
B. 15/8
C. 1.5
D. There aren’t enough samples to estimate $E[X^2]$
Q 2.2: You are empirically estimating $P(X)$ for some random variable X that takes on 100 values. You see 50 samples. How many of your $P(X=a)$ estimates might be 0?

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.
Estimation Theory

• Is sample mean is a good estimate of true mean?
 – Law of large numbers: \(\hat{\mathbb{E}}[X] \xrightarrow{n\to\infty} \mathbb{E}[X] \)
 – Central limit theorem: limit distribution of \(\hat{\mathbb{E}}[X] \)
 – Concentration inequalities
 \[
 P(|\mathbb{E}[X] - \hat{\mathbb{E}}[X]| \geq t) \leq \exp(-2nt^2)
 \]

• Covered in advanced ML/stat courses

Wolfram Demo