CS 540 Introduction to Artificial Intelligence Logic
 Yudong Chen University of Wisconsin-Madison

Sep 23, 2021

Announcements

- Homeworks:

- HW2 due Tuesday.
- Class roadmap:

Tuesday, Sep 14	Probability
Thursday, Sep 16	Linear Algebra and PCA
Tuesday, Sep 21	Statistics and Math Review
Thursday, Sep 23	Introduction to Logic
Tuesday, Sep 28	Natural Language Processing

Logic \& AI

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
- "Symbolic AI"
- The Logic Theorist (1956)
- Proved a bunch of theorems!
- Logic also the language of:
- Knowledge rep., databases, theory of computing, etc.

Symbolic Techniques in AI

Lots of systems based on symbolic approach:

- Ex: expert systems, planning, more
- Playing great chess
- Less popular recently

Symbolic vs Connectionist

Rival approach: connectionist

- Probabilistic models
- Neural networks
- Extremely popular last 20 years

Symbolic vs Connectionist

Analogy: Logic versus probability

- Which is better?
- Future: combination; best-of-bothworlds
- Actually been worked on:
- Example: Markov Logic Networks

Outline

- Introduction to logic
- Arguments, validity, soundness
- Propositional logic
- Sentences, semantics, inference
- First order logic (FOL)
- Predicates, objects, formulas, quantifiers

BEGRIFPSSCHRIPT,

DRS REINEN DENKEKS
DES REIAEN DENKBKS
y) worncel rime

Hatus境
vewis vox leve suxar
sen.

Basic Logic

- Arguments, premises, conclusions
- Argument: a set of sentences (premises) + a sentence (a conclusion)
- Validity: argument is valid iff it's necessary that if all premises are true, the conclusion is true
- Soundness: argument is sound iff valid \& premises true
- Entailment: when valid arg., premises entail conclusion

Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
- Symbols: P, Q, R, ... (atomic sentences)
- Connectives:

$$
\begin{array}{ll}
\wedge \text { and } & \text { [conjunction] } \\
\vee \text { or } & \text { [disjunction] } \\
\Rightarrow \text { implies } & {[\text { [implication] }} \\
\Leftrightarrow \text { is equivalent } & {[\text { biconditional] }} \\
\neg \text { not } & \text { [negation] }
\end{array}
$$

- Literal: P or negation $\neg \mathrm{P}$

Propositional Logic Basics

Examples:

- $(P \vee Q) \Rightarrow S$
- "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
- "If it is raining, then it is cold"
- $\neg \mathrm{R}$
- "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
- Use parentheses when needed
- Sentences: well-formed or not well-formed:
$-P \Rightarrow Q \Rightarrow S \quad X$ (not associative!)

Sentences \& Semantics

- Think of symbols as defined by user
- Sentences: built up from symbols with connectives
- Interpretation: assigning True / False to symbols
- Semantics: interpretations for which sentence evaluates to True
- Model: (of a set of sentences) interpretation for which all sentences are True

Evaluating a Sentence

- Example:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Note:
- If P is false, $P \Rightarrow Q$ is true regardless of Q (" 5 is even implies 6 is odd" is True!)
- Causality unneeded: " 5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

- Ex:

P	Q	R	$\neg \mathrm{P}$	$\mathrm{Q} \wedge \mathrm{R}$	$\neg \mathrm{P} \vee \mathrm{Q} \wedge \mathrm{R}$	$\neg \mathrm{P} \vee \mathrm{Q} \wedge \mathrm{R} \Rightarrow \mathrm{Q}$
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

- Satisfiable
- There exists some interpretation where sentence true

Break \& Quiz

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy
(i) $\neg(\neg p \rightarrow \neg q) \wedge r$
(ii) $(\neg p \vee \neg q) \rightarrow(p \vee \neg r)$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Break \& Quiz

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy
(i) $\neg(\neg p \rightarrow \neg q) \wedge r$
(ii) $\quad(\neg p \vee \neg q) \rightarrow(p \vee \neg r)$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Break \& Quiz

Q 1.2: Let $A=$ "Aldo is Italian" and $B=$ "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. $A \vee(\neg A \rightarrow B)$
- b. A V B
- c. $A \vee(A \rightarrow B)$
- d. $A \rightarrow B$

Break \& Quiz

Q 1.2: Let $A=$ "Aldo is Italian" and $B=$ "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. $A \vee(\neg A \rightarrow B)$
- b. A V B (equivalent!)
- c. $A \vee(A \rightarrow B)$
- d. $A \rightarrow B$

Break \& Quiz

Q 1.3: How many different assignments can there be to $\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right)$

- A. 2
- B. 2^{n}
- C. $2^{2 n}$
- D. 2 n

Break \& Quiz

Q 1.3: How many different assignments can there be to $\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right)$

- A. 2
- B. 2^{n}
- C. $2^{2 n}$
- D. 2 n

Knowledge Bases

- Knowledge Base (KB): A set of sentences
- Like a long sentence, connect with conjunction

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences

Entailment

Entailment: a sentence logically follows from others

- Like from a KB. Write A $=\mathrm{B}$
- $A \vDash B$ iff in every interpretation where A is true, B is also true

All interpretations
B is true
A is true

Inference

- Given a set of sentences (a KB), logical inference creates new sentences
- Compare to prob. inference!
- Challenges:
- Soundness
- Completeness
- Efficiency

Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table
- "Model checking"
- Downside: 2^{n} interpretations for n symbols

S. Leadley

Methods of Inference: 2. Using Rules

- Modus Ponens: $(A \Rightarrow B, A) \vDash B$
- And-elimination
- Many other rules
- Commutativity, associativity, de Morgan's laws, distribution for conjunction/disjunction

Methods of Inference: 3. Resolution

- Convert to special form and use a single rule
- Conjunctive Normal Form (CNF)

$$
(\underbrace{A \mathrm{~A} \vee \mathrm{~B} \vee C)}_{\text {a clause }} \wedge(\neg \mathrm{B} \vee \mathrm{~A}) \wedge(\neg \mathrm{C} \vee \mathrm{~A})
$$

Conjunction of clauses; each clause disjunction of literals

- Simple rules for converting to CNF

Methods of Inference: 3. Resolution

Start with our KB and query B

- Add \neg B
- Show that this leads to a contradiction
- Take clauses with a symbol and its complement
- Merge, throw away symbol: $P \vee Q \vee R, \neg Q \vee S \vee T: P \vee R \vee S \vee T$
- If no symbol left, KB entails B
- No new clauses, KB does not entail B

Break \& Quiz

Q 2.1: What is the CNF for $(\neg p \wedge \neg(p \Rightarrow q))$

- A. $(\neg p \wedge \neg(p \Rightarrow q))$
- B. $(\neg p) \wedge(\neg p \vee \neg q)$
- C. $(\neg p \vee q) \wedge(p \vee \neg q) \wedge(p \vee q)$
- D. $(\neg p \vee \neg q) \wedge(\neg p \vee q) \wedge(p \vee \neg q) \wedge(p \vee q)$

Break \& Quiz

Q 2.1: What is the CNF for $(\neg p \wedge \neg(p \Rightarrow q))$

- A. $(\neg p \wedge \neg(p \Rightarrow q))$
- B. $(\neg p) \wedge(\neg p \vee \neg q)$
- C. $(\neg p \vee q) \wedge(p \vee \neg q) \wedge(p \vee q)$
- D. $(\neg p \vee \neg q) \wedge(\neg p \vee q) \wedge(p \vee \neg q) \wedge(p \vee q)$

Break \& Quiz

Q 2.2: Which has more rows: a truth table on n symbols, or a joint distribution table on n binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Break \& Quiz

Q 2.2: Which has more rows: a truth table on n symbols, or a joint distribution table on n binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

- Facts, Objects, Relations, Functions

First Order Logic (FOL)

Basics:

- Constants: "16", "Green", "Bob"
- Functions: map objects to objects
- Predicates: map objects to T/F:
- Greater(5,3)
- Color(grass, green)

First Order Logic (FOL)

Basics:

- Variables: x, y, z
- Connectives: Same as propositional logic
- Quantifiers:
$-\forall$ universal quantifier: $\forall \mathbf{x}$ human (\mathbf{x}) \Rightarrow mammal (\mathbf{x})
$-\exists$ existential quantifier

