CS 540 Introduction to Artificial Intelligence

Machine Learning Overview

Yudong Chen
University of Wisconsin-Madison

Sep 30, 2021

Slides created by Sharon Li [modified by Yudong Chen]
• HW 2: classify documents by bag-of-words
• Ideas for improving classification accuracy?
Today’s outline

• What is machine learning?
• Supervised Learning
 • Classification
 • Regression
• Unsupervised Learning
 • Clustering
• Reinforcement Learning
Part I: What is machine learning?
HUMANS LEARN FROM PAST EXPERIENCES

MACHINES FOLLOW INSTRUCTIONS GIVEN BY HUMANS
What is **machine learning**?

- Arthur Samuel (1959): Machine learning is the field of study that gives the computer the ability to learn *without being explicitly programmed*.
Without Machine Learning

* VERY SPECIFIC INSTRUCTIONS *

With Machine Learning

DATA

https://tung-dn.github.io/programming.html
What is **machine learning**?

- Arthur Samuel (1959): Machine learning is the field of study that gives the computer the ability to learn **without being explicitly programmed**.

- Tom Mitchell (1997): A computer program is said to learn from **experience** E with respect to some class of **tasks** T and **performance measure** P, if its performance at tasks in T as measured by P, improves with experience E.
Taxonomy of ML

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
Part II: Supervised Learning
Example 1: Predict whether a user likes a song or not.
Example 1: Predict whether a user likes a song or not
Example 1: Predict whether a user likes a song or not

User Yudong

- DisLike
- Like

![Intensity vs Tempo Diagram]

- Relaxed
- Tempo
- Fast
Example 1: Predict whether a user likes a song or not

User Yudong

DisLike

Like
Example 1: Predict whether a user likes a song or not

User Yudong

- Orange: DisLike
- Blue: Like

New data?
Example 1: Predict whether a user likes a song or not

User Yudong

- DisLike
- Like

New data
Example 2: Classify Images

http://www.image-net.org/
Example 2: Classify Images

indoor

outdoor
Example 2: Classify Images

Training data

learning (i.e., training)
Learning (i.e., training) through training data leads to performance testing with test data.
How to represent data?

input data

\[x \in \mathbb{R}^d \]

\(d \): feature dimension

\[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

Tempo

Intensity

There can be many features!
How to represent data?

Label

\[y \in \{0, 1\} \]

Where “supervision” comes from

Intensity

Relaxed Tempo Fast

\[y = 1 \]

\[y = 0 \]
Represent various types of data

- Image
 - Pixel values

- Bank account
 - Credit rating, balance, # deposits in last day, week, month, year, #withdrawals
Two Types of Supervised Learning Algorithms

Classification

Regression
Example of regression: housing price prediction

Given: a dataset that contains n samples

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

Task: if a residence has x squares feet, predict the price?
Example of regression: housing price prediction

Given: a dataset that contains \(n \) samples

\[(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)\]

Task: if a residence has \(x \) squares feet, predict the price?

\[y \in \mathbb{R}\]
Example of regression: housing price prediction

Input with more features (e.g., lot size)

(features/input) \(x \in \mathbb{R}^2 \) \rightarrow (label/output) \(y \in \mathbb{R} \)

(credit: stanford CS229)
Supervised Learning: More examples

$x =$ raw pixels of the image

$y =$ bounding boxes

Russakovsky et al. 2015
Two Types of Supervised Learning Algorithms

Classification

• the label is a \textit{discrete} variable

\[y \in \{1,2,3,\ldots,K\} \]

Regression

• the label is a \textit{continuous} variable

\[y \in \mathbb{R} \]
Training Data for Supervised Learning

Training data is a collection of input instances to the learning algorithm:

\[(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)\]

A training data is the “experience” given to a learning algorithm.
Goal of Supervised Learning

Given training data

\[(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_n, y_n)\]

Learn a function mapping \(f : X \rightarrow Y\), such that \(f(x)\) predicts the label \(y\) on future data \(x\) (not in training data)
Goal of Supervised Learning

Training set error

- 0-1 loss for classification $\ell = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(f(x_i) \neq y_i)$

- Squared loss for regression: $\ell = \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$

A learning algorithm optimizes the training objective

$$f^* = \arg \min_{f} \mathbb{E}_{(x,y)} \ell(f(x), y)$$

Details in upcoming lectures :)
Break & Quiz

Q 1.1: Which is true about feature vectors?

- A. Feature vectors can have at most 10 dimensions
- B. Feature vectors have only integer values
- C. Raw images can be used as feature vectors
- D. Text data cannot be represented as feature vectors
Break & Quiz

Q 1.1: Which is true about feature vectors?

- A. Feature vectors can have at most 10 dimensions
- B. Feature vectors have only integer values
- C. Raw images can be used as feature vectors
- D. Text data cannot be represented as feature vectors
Q 1.2: Which of the following is not typically supervised learning?

A. Object detection (identifying bounding boxes on objects)
B. Classification
C. Regression
D. Dimensionality Reduction (e.g., PCA)
Break & Quiz

Q 1.2: Which of the following is not typically supervised learning?

A. Object detection (identifying bounding boxes on objects)
B. Classification
C. Regression
D. Dimensionality Reduction (e.g., PCA)
Part II: Unsupervised Learning
Unsupervised Learning

- Given: dataset contains **no label**: x_1, x_2, \ldots, x_n
- **Goal**: discover interesting patterns and structures in the data
Unsupervised Learning

- Given: dataset contains no label: \(x_1, x_2, \ldots, x_n \)
- Goal: discover interesting patterns and structures in the data
Unsupervised Learning

- Given: dataset contains no label: x_1, x_2, \ldots, x_n
- **Goal**: discover interesting patterns and structures in the data

![Diagram showing two groups of data points with labels $y = 1$ and $y = 0$.](image)
Clustering

- Given: dataset contains no label: \(x_1, x_2, \ldots, x_n \)
- **Output:** divides the data into clusters such that there are intra-cluster similarity and inter-cluster dissimilarity
Clustering Irises using three different features

The colors represent clusters identified by the algorithm, not provided as input.
Clustering

• You probably have >1000 digital photos stored on your phone
• After this class you will be able to organize them better (based on visual similarity)
Clustering Genes

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. ’06]
Clustering Words with Similar Meanings

[Arora-Ge-Liang-Ma-Risteski, TACL’17,18]
How do we perform clustering?

• Many clustering algorithms. We will look at the two most frequently used ones:
 • *K-means clustering*: we specify the desired number of clusters, and use an iterative algorithm to find them
 • *Hierarchical clustering*: we build a binary tree over the dataset
K-means clustering

• Very popular clustering method

• Don’t confuse it with k-NN classifier

• Input: a dataset x_1, x_2, \ldots, x_n, and assume the number of clusters k is given
Step 1: **Randomly** picking 2 positions as initial cluster centers (not necessarily a data point)
K-means clustering

Step 2: for each point \(x \), determine its cluster: find the closest center in Euclidean space
K-means clustering

Step 3: update all cluster centers as the centroids
K-means clustering

Repeat step 2 & 3 until convergence

Converged solution!
No labels required!
K-means clustering: A demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
Hierarchical Clustering (more to follow next lecture)
Break & Quiz

Q 1.2: Which is true about supervised learning?

A. The process doesn’t involve human input
B. The machine is learning from training and test data
C. Clustering data makes use of labelled data
D. Supervised learning requires labels
Break & Quiz

Q 1.2: Which is true about supervised learning?

A. The process doesn’t involve human input
B. The machine is learning from training and test data
C. Clustering data makes use of labelled data
D. Supervised learning requires labels
Q 1.2: Which is true about unsupervised learning?

A. There are only 2 types of unsupervised learning algorithms.
B. K-means clustering is a type of hierarchical clustering.
C. K-means clustering automatically determines the number of clusters.
D. Unsupervised learning is widely used in applications.
Q 1.2: Which is true about unsupervised learning?

A. There are only 2 types of unsupervised learning algorithms.
B. K-means clustering is a type of hierarchical clustering.
C. K-means clustering automatically determines the number of clusters.
D. Unsupervised learning is widely used in applications.
Part III: Reinforcement Learning
Reinforcement Learning

• Given: an agent that can take actions and a reward function specifying how good an action is.

• Goal: learn to choose actions that maximize total future reward.

Google Deepmind
Reinforcement Learning Key Problems

1. Problem: maximal reward action is unknown
 • Exploration-exploitation trade-off
 • Try new restaurants, or stick with known ones?

2. Problem: actions may have delayed effects.
 • Requires credit-assignment
 • Which moves are good in a chess game?

Multi-armed Bandit
Today’s recap

• What is machine learning?
• Supervised Learning
 • Classification
 • Regression
• Unsupervised Learning
• Reinforcement Learning
Thanks!