

CS 540 Introduction to Artificial Intelligence Unsupervised Learning I

Yudong Chen University of Wisconsin-Madison

Oct 5, 2021

Announcements

- Homeworks:
 - HW4 due next Tuesday
- Class roadmap:

Thursday, Sep 30	ML Intro	
Tuesday, Oct 5	ML Unsupervised I	achi:
Thursday, Oct 7	ML Unsupervised II	ne L
Tuesday, Oct 12	ML Linear Regression	earr
Thursday, Oct 14	ML: KNN, Naïve Bayes	rning

Recap of Supervised/Unsupervised

Supervised learning:

- Make predictions, classify data, perform regression
- Dataset: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

• Goal: find function $f: X \to Y$ to predict label on **new** data

Recap of Supervised/Unsupervised

Unsupervised learning:

- No labels; generally won't be making predictions
- Dataset: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$
- Goal: find patterns & structures that help better understand data.

Recap of Reinforcement Learning

Learn how to act in order to maximize rewards

DeepMind

- There are other kinds of ML:
 - Mixtures: semi-supervised learning, self-supervised

Outline

- Intro to Clustering
 - Clustering Types, Centroid-based, k-means review
- Hierarchical Clustering
 - Divisive, agglomerative, linkage strategies
- Other Clustering Types
 - Graph-based, cuts, spectral clustering

Unsupervised Learning & Clustering

- Note that clustering is just one type of unsupervised learning (UL)
- PCA is another unsupervised algorithm
- Estimating probability distributions also UL (GANs)

StyleGAN2 (Kerras et al '20)

Several types of clustering

Partitional

- Centroid
- Graph-theoretic
- Spectral

Hierarchical

- Agglomerative
- Divisive

Bayesian

- Decision-based
- Nonparametric

- k-means is an example of partitional centroid-based
- Recall steps: 1. Randomly pick k cluster centers

• 2. Find closest center for each point

• 3. Update cluster centers by computing centroids

• Repeat Steps 2 & 3 until convergence

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

$$C_1 = \{(2,2), (4,4), (6,6)\}, C_2 = \{(0,4), (4,0)\}, C_3 = \{(5,5), (9,9)\}$$

Cluster centroids at the next iteration are?

- A. C₁: (4,4), C₂: (2,2), C₃: (7,7)
- B. C₁: (6,6), C₂: (4,4), C₃: (9,9)
- C. C₁: (2,2), C₂: (0,0), C₃: (5,5)
- D. C₁: (2,6), C₂: (0,4), C₃: (5,9)

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

$$C_1 = \{(2,2), (4,4), (6,6)\}, C_2 = \{(0,4), (4,0)\}, C_3 = \{(5,5), (9,9)\}$$

Cluster centroids at the next iteration are?

- A. C₁: (4,4), C₂: (2,2), C₃: (7,7)
- B. C₁: (6,6), C₂: (4,4), C₃: (9,9)
- C. C_1 : (2,2), C_2 : (0,0), C_3 : (5,5)
- D. C₁: (2,6), C₂: (0,4), C₃: (5,9)

Q 1.2: We are running 3-means again. We have 3 centers, c_1 =(0,1), c_2 =(2,1), c_3 =(-1,2). Which cluster assignment is possible for the points (1,1) and (-1,1), respectively? Ties are broken arbitrarily:

(i)
$$c_1$$
, c_1 (ii) c_2 , c_3 (iii) c_1 , c_3

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (iii)
- D. All of them

Q 1.2: We are running 3-means again. We have 3 centers, $c_1=(0,1)$, $c_2=(2,1)$, $c_3=(-1,2)$. Which cluster assignment is possible for the points (1,1) and (-1,1), respectively? Ties are broken arbitrarily:

(i)
$$c_1$$
, c_1 (ii) c_2 , c_3 (iii) c_1 , c_3

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (iii)
- D. All of them

Q 1.3: If we run K-means clustering twice with random initial cluster centers, are we guaranteed to get same clustering results? Does K-means always converge?

- A. Yes, Yes
- B. No, Yes
- C. Yes, No
- D. No, No

Q 1.3: If we run K-means clustering twice with random initial cluster centers, are we guaranteed to get same clustering results? Does K-means always converge?

- A. Yes, Yes
- B. No, Yes
- C. Yes, No
- D. No, No

Hierarchical Clustering

Basic idea: build a "hierarchy"

- One advantage: no need for k, number of clusters.
- Input: points in \mathbb{R}^d
- Output: a hierarchy
 - A binary tree

Credit: Wikipedia

Agglomerative vs Divisive

Two ways to go:

- Agglomerative: bottom up.
 - Start: each point a cluster. Progressively merge clusters

- Divisive: top down
 - Start: all points in one cluster. Progressively split clusters

Credit: r2d3.us

Agglomerative. Start: every point is its own cluster

Get pair of clusters that are closest and merge

Repeat: Get pair of clusters that are closest and merge

Repeat: Get pair of clusters that are closest and merge

Merging Criteria

Merge: use closest clusters. Define closest?

• Single-linkage

$$d(A,B) = \min_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

Complete-linkage

$$d(A,B) = \max_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

Average-linkage

$$d(A,B) = \frac{1}{|A||B|} \sum_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

We'll merge using single-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

We'll merge using single-linkage

$$d(C_1, \{4\}) = d(2, 4) = 2$$

$$d(\{4\}, \{5\}) = d(4, 5) = 1$$
1 2 4 5 7.25

Continue...

$$d(C_1, C_2) = d(2, 4) = 2$$

 $d(C_2, \{7.25\}) = d(5, 7.25) = 2.25$

Continue...

We'll merge using complete-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

Beginning is the same...

Now we diverge:

When to Stop?

No simple answer:

Use the binary tree (a dendogram)

 Cut at different levels (get different heights/depths)

http://opentreeoflife.org/

Q 2.1: Let's do hierarchical clustering for **two** clusters with average linkage on the dataset below. What are the clusters?

- A. {1}, {2,4,5,7.25}
- B. {1,2}, {4, 5, 7.25}
- C. {1,2,4}, {5, 7.25}
- D. {1,2,4,5}, {7.25}

Break & Quiz

Q 2.1: Let's do hierarchical clustering for **two** clusters with average linkage on the dataset below. What are the clusters?

- A. {1}, {2,4,5,7.25}
- B. {1,2}, {4, 5, 7.25}
- C. {1,2,4}, {5, 7.25}
- D. {1,2,4,5}, {7.25}

Break & Quiz

Q 2.2: If we do hierarchical clustering on *n* points, the maximum depth of the resulting tree is

- A. 2
- B. log *n*
- C. n/2
- D. *n*-1

Break & Quiz

Q 2.2: If we do hierarchical clustering on *n* points, the maximum depth of the resulting tree is

- A. 2
- B. log *n*
- C. n/2
- D. *n*-1

Other Types of Clustering

Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
 - Edges can be weighted or unweighted
 - Encode similarity

- Don't need vectors here
 - Just edges (and maybe weights)

Graph-Based Clustering

Want: partition V into V₁ and V₂

- Implies a graph "cut"
- One idea: minimize the weight of the cut
 - Downside: might just cut of one node
 - Need: "balanced" cut

Partition-Based Clustering

Want: partition V into V_1 and V_2

- Just minimizing weight isn't good... want balance!
- Approaches:

$$CCut(V_1, V_2) = \frac{Cut(V_1, V_2)}{|V_1|} + \frac{Cut(V_1, V_2)}{|V_2|}$$

$$NCut(V_1, V_2) = \frac{Cut(V_1, V_2)}{\sum_{i \in V_1} d_i} + \frac{Cut(V_1, V_2)}{\sum_{i \in V_2} d_i}$$

Partition-Based Clustering

How do we compute these?

- Hard problem → heuristics
 - Greedy algorithm
 - "Spectral" approaches
- Spectral clustering approach:
 - Adjacency matrix

	0	0	0	1	1
	0	0	1	1	0
=	0	1	0	0	0
	1	1	0	0	1
	1	0 0 1 1 0	0	1	0
	_				_

Partition-Based Clustering

- Spectral clustering approach:
 - Adjacency matrix
 - Degree matrix

_	$0 \\ 0$	0 1 1 0	1 0	1 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$
	1	1	0	0	1
	1	0	0	1	0

- Spectral clustering approach:
 - -1. Compute Laplacian L = D A (Important tool in graph theory)

- Spectral clustering approach:
 - -1. Compute Laplacian L = D A
 - 2. Compute k smallest eigenvectors
 - 3. Set U to be the $n \times k$ matrix with u_1 , ..., u_k as columns. Treat n rows as n points in \mathbb{R}^k
 - 4. Run k-means on the representations

- Compare/contrast to PCA:
 - Use an eigendecomposition / dimensionality reduction
 - But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
 - "Lower" eigenvectors give partitioning information

Q: Why do this?

- 1. No need for points or distances as input
- 2. Can handle intuitive separation (k-means can't!)

