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Announcements

 Homeworks:

— HW4 due next Tuesday

e Class roadmap:

Thursday, Sep 30

Thursday, Oct 7
Tuesday, Oct 12
Thursday, Oct 14

ML Intro

ML Unsupervised Il
ML Linear Regression

ML: KNN, Naive Bayes
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Recap of Supervised/Unsupervised

Supervised learning:

 Make predictions, classify data, perform regression
* Dataset: (X1,%1),(X2,%2)s- -+, (Xn,Yn)

Features / Covariates / Input Labels / Outputs

* Goal: find function f: X — Y to predict label on new data




Recap of Supervised/Unsupervised

Unsupervised learning:
* No labels; generally won’t be making predictions
* Dataset: x1,X,...,X,

* Goal: find patterns & structures that help better understand
data.
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Recap of Reinforcement Learning

e Learn how to act in order to
maximize rewards

DeepMind

* There are other kinds of ML:
— Mixtures: semi-supervised learning, self-supervised



Outline

* Intro to Clustering

— Clustering Types, Centroid-based, k-means review
* Hierarchical Clustering
— Divisive, agglomerative, linkage strategies

e Other Clustering Types

— Graph-based, cuts, spectral clustering



Unsupervised Learning & Clustering

* Note that clustering is just one type of unsupervised
learning (UL)

 PCAis another unsupervised algorithm
e Estimating probability distributions also UL (GANSs)

StyleGAN2 (Kerras et al '20)



Clustering Types

e Several types of clustering
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Clustering Types

* k-means is an example of partitional centroid-based

* Recall steps: 1. Randomly pick k cluster centers
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Clustering Types

e 2. Find closest center for each point
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Clustering Types

e 3. Update cluster centers by computing centroids
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Clustering Types

* Repeat Steps 2 & 3 until convergence
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Break & Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial
clusters

(1 = {(272)7 (47 4)7 (676)}7 Cy = {<074)7 (47())}703 — {(575>7 (979>}

Cluster centroids at the next iteration are?

« A.C:(4,4),C,:(2,2),C5:(7,7)
* B.C;:(6,6), C,: (4,4), C5:(9,9)
 C.C;:(2,2),C:(0,0), C5: (5,5)
« D.C;:(2,6),C,:(0,4), C5: (5,9)



Break & Quiz

Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial
clusters

(1 = {(272)7 (47 4)7 (676)}7 Gy = {<074>7 (47())}703 — {<575>7 (979>}

Cluster centroids at the next iteration are?

* A.C;:(4,4),C,:(2,2),C5:(7,7)
* B.C;:(6,6), C,: (4,4), C5:(9,9)
 C.C;:(2,2),C:(0,0), C5: (5,5)
« D.C;:(2,6),C,:(0,4), C5: (5,9)



Break & Quiz

Q 1.2: We are running 3-means again. We have 3 centers,
c,=(0,1), ¢,=(2,1), c3=(-1,2). Which cluster assignment is
possible for the points (1,1) and (-1,1), respectively? Ties
are broken arbitrarily:

(l) Ci, C (”) C2, C3 (“I) C1, C3

A. Only (i)

B. Only (ii) and (iii)
C. Only (i) and (iii)
D. All of them



Break & Quiz

Q 1.2: We are running 3-means again. We have 3 centers,
c,=(0,1), ¢,=(2,1), c3=(-1,2). Which cluster assignment is
possible for the points (1,1) and (-1,1), respectively? Ties
are broken arbitrarily:

(l) Ci, C (”) Co, C3 (“I) C1, C3

A. Only (i)

B. Only (ii) and (iii)
C. Only (i) and (iii)
D. All of them



Break & Quiz

Q 1.3: If we run K-means clustering twice with random
initial cluster centers, are we guaranteed to get same
clustering results? Does K-means always converge?

A. Yes, Yes
B. No, Yes
C. Yes, No
D. No, No



Break & Quiz

Q 1.3: If we run K-means clustering twice with random
initial cluster centers, are we guaranteed to get same
clustering results? Does K-means always converge?

A. Yes, Yes
B. No, Yes
C. Yes, No
D. No, No



Hierarchical Clustering

Basic idea: build a “hierarchy”

* One advantage: no need for k, number
of clusters.

* Input: points in R4

e Output: a hierarchy
— A binary tree

Credit: Wikipedia



Agglomerative vs Divisive

Two ways to go:

« Agglomerative: bottom up.

— Start: each point a cluster. Progressively
merge clusters

* Divisive: top down

— Start: all points in one cluster. Progressively
split clusters

Credit: r2d3.us



Agglomerative Clustering Example
Agglomerative. Start: every point is its own cluster



Agglomerative Clustering Example
Get pair of clusters that are closest and merge
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Agglomerative Clustering Example
Repeat: Get pair of clusters that are closest and merge
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Agglomerative Clustering Example
Repeat: Get pair of clusters that are closest and merge
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Merging Criteria

Merge: use closest clusters. Define closest?

* Single-linkage
d(A,B)= min _d(z1,x2)

CEleA,CEQEB
* Complete-linkage
d(A,B) = max d(r1,x2)

T EA,QIQ €B
* Average-linkage
1

d(A,B) — Z d(il?l,flfg)

CAIBl L, A= s



Single-linkage Example

We’ll merge using single-linkage
* 1-dimensional vectors.
* |Initial: all points are clusters

1 2 4 5 7.25



Single-linkage Example
We’ll merge using single-linkage

d(Cy, {4)) = d(2,4) = 2
d({4},{5}) = d(4,5) =1

1 2 4 5 7.25



Single-linkage Example

Continue...
d(Cy,Cz) = d(2,4) =2
d(Cy,{7.25}) = d(5,7.25) = 2.25

NN

1 2 4 5 7.25



Single-linkage Example

Continue...

1 2 4 5 7.25



Single-linkage Example

1 2 4 5 7.25



Complete-linkage Example

We'll merge using complete-linkage
* 1-dimensional vectors.
* |Initial: all points are clusters

1 2 4 5 7.25



Complete-linkage Example

Beginning is the same...

d(C1,Cy) = d(1,5) = 4
d(Cy, {7.25}) = d(4,7.25) = 3.25

1 2 4 5 7.25



Complete-linkage Example

Now we diverge:

1 2 4 5 7.25



Complete-linkage Example

1 2 4 5 7.25



When to Stop?

No simple answer:

e Use the binary tree (a
dendogram)

e Cut at different levels (get
different heights/depths)




Break & Quiz

Q 2.1: Let’s do hierarchical clustering for two clusters with
average linkage on the dataset below. What are the clusters?

« A.{1},{2,4,5,7.25}
 B.{1,2},{4,5, 7.25}
 C.{1,2,4}, 15, 7.25}
 D.{1,2,4,5},{7.25}

o—©@ @ @ @
1 2 4 5 7.25



Break & Quiz

Q 2.1: Let’s do hierarchical clustering for two clusters with
average linkage on the dataset below. What are the clusters?

« A {1} {2,4,5,7.25}
. B.{1,2},{4,5,7.25}
e C.{1,2,4}, {5, 7.25}
 D.{1,2,4,5},{7.25}

o—©@ @ @ @
1 2 4 5 7.25



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

e A2

* B.logn
C.n/2
* D.n-1



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the
maximum depth of the resulting tree is

e A2

* B.logn
C.n/2
D. n-1



Other Types of Clustering

Graph-based/proximity-based

* Recall: Graph G = (V,E) has vertex set V, edge set E.
— Edges can be weighted or unweighted

— Encode similarity 0'0

 Don’t need vectors here o ovo
— Just edges (and maybe weights)
oo



Graph-Based Clustering

Want: partition VintoV,and V,

* Implies a graph “cut”

* One idea: minimize the weight of
the cut

— Downside: might just cut of one node
— Need: “balanced” cut




Partition-Based Clustering

Want: partition Vinto V,and V,
e Just minimizing weight isn’t good... want balance!
* Approaches:

Cut(Vi, 13) N Cut(V1, Va)

Ot Vo) = 9] 1A

Cut(Vl, Vg) n CUt<V17 V2)

NCU.t(Vl,V2>: z 1. Z 1.
1€V, 1€V



Partition-Based Clustering

How do we compute these?

* Hard problem = heuristics
— Greedy algorithm

— “Spectral” approaches

e Spectral clustering approach:

S OO = O
_O O =

0
0
— Adjacency matrix A=10
1
1

SO = O O =




Partition-Based Clustering

e Spectral clustering approach:
— Adjacency matrix
— Degree matrix
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Spectral Clustering

e Spectral clustering approach:
— 1. Compute Laplacian L=D-A
(Important tool in graph theory)

2 0 0 0 0 00 0 1 1

0 2 0 0 0 00 1 1 0
L={0 0 1 0 O0]—-(0 1 0 O 0=

00 0 3 0 1 1 0 0 1

00 0 0 2 1 0 0 1 0

"\ ' ] | ' [

Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering

e Spectral clustering approach:
— 1. Compute Laplacian L=D-A

— 2. Compute k smallest eigenvectors

— 3. Set U to be the n x k matrix with uy, ..., u,as
columns. Treat n rows as n points in R®

— 4. Run k-means on the representations



Spectral Clustering

* Compare/contrast to PCA:

— Use an eigendecomposition / dimensionality
reduction

e But, run on Laplacian (not covariance); use smallest eigenvectors,
not largest

* Intuition: Laplacian encodes structure information

— “Lower” eigenvectors give partitioning information



Spectral Clustering

Q: Why do this?
— 1. No need for points or distances as input
— 2. Can handle intuitive separation (k-means can’t!)

K-Means Circles Spectral Circles
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