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Announcements

• Homeworks: 
– HW4 due next Tuesday

• Class roadmap:
Thursday,  Sep 30 ML Intro

Tuesday, Oct 5 ML Unsupervised I

Thursday, Oct 7 ML Unsupervised II

Tuesday, Oct 12 ML Linear Regression

Thursday, Oct 14 ML: KNN, Naïve Bayes

M
achine Learning



Recap of Supervised/Unsupervised

Supervised learning:
• Make predictions, classify data,  perform regression
• Dataset:

• Goal: find function                    to predict label on new data 
Features / Covariates / Input Labels / Outputs



Recap of Supervised/Unsupervised

Unsupervised learning:
• No labels; generally won’t be making predictions
• Dataset:
• Goal: find patterns & structures that help better understand 

data.

Mulvey and  Gingold



Recap of Reinforcement Learning

• Learn how to act in order to 
maximize rewards

• There are other kinds of ML:
– Mixtures: semi-supervised learning, self-supervised 

DeepMind



Outline

• Intro to Clustering
– Clustering Types, Centroid-based, k-means review

• Hierarchical Clustering
– Divisive, agglomerative, linkage strategies

• Other Clustering Types
– Graph-based, cuts, spectral clustering



Unsupervised Learning & Clustering

• Note that clustering is just one type of unsupervised 
learning (UL)

• PCA is another unsupervised algorithm
• Estimating probability distributions also UL (GANs)

StyleGAN2 (Kerras et al ’20)



Clustering Types

• Several types of clustering
Partitional

- Centroid
- Graph-theoretic
- Spectral

Hierarchical
- Agglomerative
- Divisive

Bayesian
- Decision-based
- Nonparametric



Clustering Types

• k-means is an example of partitional centroid-based
• Recall steps: 1. Randomly pick k cluster centers



Clustering Types

• 2. Find closest center for each point



Clustering Types

• 3. Update cluster centers by computing centroids



Clustering Types

• Repeat Steps 2 & 3 until convergence



Break & Quiz
Q 1.1: You have seven 2-dimensional points. You run 3-means on it, with initial 
clusters

Cluster centroids at the next iteration are?

• A. C1: (4,4), C2: (2,2), C3: (7,7)
• B. C1: (6,6), C2: (4,4), C3: (9,9)
• C. C1: (2,2), C2: (0,0), C3: (5,5)
• D. C1: (2,6), C2: (0,4), C3: (5,9)



Break & Quiz
Q 1.2: We are running 3-means again. We have 3 centers, 
c1=(0,1), c2=(2,1), c3=(-1,2). Which cluster assignment is 
possible for the points (1,1) and (-1,1), respectively? Ties 
are broken arbitrarily: 

(i) c1, c1 (ii) c2, c3 (iii) c1, c3

• A. Only (i) 
• B. Only (ii) and (iii)
• C. Only (i) and (iii)
• D. All of them



Break & Quiz
Q 1.3: If we run K-means clustering twice with random 
initial cluster centers, are we guaranteed to get same 
clustering results? Does K-means always converge?

• A. Yes, Yes
• B. No, Yes
• C. Yes, No
• D. No, No



Hierarchical Clustering

Basic idea: build a “hierarchy”
• One advantage: no need for k, number 

of clusters.
• Input: points in ℝ"
• Output: a hierarchy

– A binary tree

Credit: Wikipedia



Agglomerative vs Divisive

Two ways to go:
• Agglomerative: bottom up. 

– Start: each point a cluster. Progressively 
merge clusters 

• Divisive: top down
– Start: all points in one cluster. Progressively 

split clusters

Credit: r2d3.us



Agglomerative Clustering Example

Agglomerative. Start: every point is its own cluster



Agglomerative Clustering Example

Get pair of clusters that are closest and merge



Agglomerative Clustering Example

Repeat: Get pair of clusters that are closest and merge



Agglomerative Clustering Example

Repeat: Get pair of clusters that are closest and merge



Merging Criteria

Merge: use closest clusters. Define closest?
• Single-linkage

• Complete-linkage

• Average-linkage



We’ll merge using single-linkage
• 1-dimensional vectors.
• Initial: all points are clusters

Single-linkage Example

1 2 4 5 7.25



We’ll merge using single-linkage

Single-linkage Example

1 2 4 5 7.25

C1



Continue…

Single-linkage Example

1 2 4 5 7.25

C1 C2



Continue…

Single-linkage Example

C3

1 2 4 5 7.25

C1 C2



Single-linkage Example

1 2 4 5 7.25

C3

C1 C2

C4



We’ll merge using complete-linkage
• 1-dimensional vectors.
• Initial: all points are clusters

Complete-linkage Example

1 2 4 5 7.25



Beginning is the same…

Complete-linkage Example

1 2 4 5 7.25

C1 C2



Now we diverge:

Complete-linkage Example

1 2 4 5 7.25

C1 C2

C3



Complete-linkage Example

1 2 4 5 7.25

C1 C2

C3

C4



When to Stop?

No simple answer:

• Use the binary tree (a 
dendogram)

• Cut at different levels (get 
different heights/depths)

http://opentreeoflife.org/



Break & Quiz
Q 2.1: Let’s do hierarchical clustering for two clusters with 
average linkage on the dataset below. What are the clusters?

• A. {1}, {2,4,5,7.25}
• B. {1,2}, {4, 5, 7.25}
• C. {1,2,4}, {5, 7.25}
• D. {1,2,4,5}, {7.25}

1 2 4 5 7.25



Break & Quiz
Q 2.2: If we do hierarchical clustering on n points, the 
maximum depth of the resulting tree is

• A. 2
• B. log n
• C. n/2
• D. n-1



Other Types of Clustering

Graph-based/proximity-based
• Recall: Graph G = (V,E) has vertex set V, edge set E.
– Edges can be weighted or unweighted
– Encode similarity

• Don’t need vectors here
– Just edges (and maybe weights)



0.0
1

Graph-Based Clustering

Want: partition V into V1 and V2

• Implies a graph “cut”
• One idea: minimize the weight of 

the cut
– Downside: might just cut of one node
– Need: “balanced” cut

0.0
1



Partition-Based Clustering

Want: partition V into V1 and V2

• Just minimizing weight isn’t good… want balance!
• Approaches: 



Partition-Based Clustering

How do we compute these?
• Hard problem → heuristics
– Greedy algorithm
– “Spectral” approaches

• Spectral clustering approach:
– Adjacency matrix 



Partition-Based Clustering

• Spectral clustering approach:
– Adjacency matrix 
– Degree matrix



Spectral Clustering

• Spectral clustering approach:
– 1. Compute Laplacian L = D – A
(Important tool in graph theory)

Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering

• Spectral clustering approach:
– 1. Compute Laplacian L = D – A
– 2. Compute k smallest eigenvectors
– 3. Set U to be the n x k matrix with u1, …, uk as 

columns. Treat n rows as n points in ℝ"
– 4. Run k-means on the representations 



Spectral Clustering

• Compare/contrast to PCA:
– Use an eigendecomposition / dimensionality 

reduction
• But, run on Laplacian (not covariance); use smallest eigenvectors, 

not largest

• Intuition: Laplacian encodes structure information
– “Lower” eigenvectors give partitioning information



Spectral Clustering

Q: Why do this? 
– 1. No need for points or distances as input 
– 2. Can handle intuitive separation (k-means can’t!)

Credit: William Fleshman


