

# CS 540 Introduction to Artificial Intelligence Unsupervised Learning II 

Yudong Chen<br>University of Wisconsin-Madison

Oct 7, 2021

## Announcements

- Homework:
- HW4 due Tuesday
- Class roadmap:

| Thursday, Sep 30 | ML Intro |
| :--- | :--- |
| Tuesday, Oct 5 | ML Unsupervised I |
| Thursday, Oct 7 | ML Unsupervised II |
| Tuesday, Oct 12 | ML Linear Regression |
| Thursday, Oct 14 | ML: KNN, Naïve Bayes |

## HW 3 Recap

## First three methods

```
def load_and_center_dataset(filename):
    x = np.load(filename)
    mu = np.mean(x, axis=0)
    return x - mu Centering
def get_covariance(dataset):
    n = len(dataset)
    return np.dot(np.transpose(dataset), dataset) / (n-1) M Matrix multiplication
def get_eig(S, m):
    w, v = eigh(S, eigvals=(len(S) - m, len(S) - 1))
    return np.diag(w[::-1]), np.fliplr(v)
```


## HW 3 Recap

## Projecting and displaying the image

```
def project_image(img, U):
alpha = np.dot(img, U)
xapprox = np.dot(U, alpha)
return xapprox
```


## Outline

- Recap: graph clustering, cuts, spectral method
- Unsupervised Learning: Visualization
- t-SNE, algorithm, example, vs. PCA
- Unsupervised Learning: Density Estimation
- Kernel density estimation: high-level intro


## Graph/proximity-based Clustering

- Recall: Graph $G=(V, E)$ has vertex set $V$, edge set $E$.
- Edges can be weighted or unweighted
- Encode similarity
- Don't need vectors here
- Just edges (and maybe weights)



## Minimum Cuts

## Want: partition V into $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$

- Implies a graph "cut"
- One idea: minimize the weight of
 the cut
- Downside: might just cut of one node
- Need: "balanced" cut


## Minimizing Cuts

Want: partition V into $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$

- Just minimizing weight isn't good... want balance!
- Better approach: minimize one of the following

$$
\begin{aligned}
& \operatorname{CCut}\left(V_{1}, V_{2}\right)=\frac{\operatorname{Cut}\left(V_{1}, V_{2}\right)}{\left|V_{1}\right|}+\frac{\operatorname{Cut}\left(V_{1}, V_{2}\right)}{\left|V_{2}\right|} \\
& \operatorname{NCut}\left(V_{1}, V_{2}\right)=\frac{\operatorname{Cut}\left(V_{1}, V_{2}\right)}{\sum_{i \in V_{1}} d_{i}}+\frac{\operatorname{Cut}\left(V_{1}, V_{2}\right)}{\sum_{i \in V_{2}} d_{i}} \text { \#vertices in } V_{2} \\
& \text { total \#edges at }
\end{aligned}
$$

## Spectral Clustering

- Spectral clustering approach:
- Adjacency matrix
- Degree matrix


$$
D=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right] \quad A=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

## Spectral Clustering

- Spectral clustering approach:
- 1. Compute Laplacian L = D - A
(Important tool in graph theory)



## Spectral Clustering

- Spectral clustering approach:
- 1. Compute Laplacian L = D - A
- 2. Compute $k$ smallest eigenvectors
-3 . Set $U$ to be the $n \times k$ matrix with $u_{1}, \ldots, u_{k}$ as columns. Treat $n$ rows as $n$ points/vectors in $\mathbb{R}^{k}$
-4. Run k-means on these $n$ points/vectors


## Spectral Clustering

- Compare/contrast to PCA:
- Use an eigendecomposition / dimensionality reduction
- But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
- "Lower" eigenvectors give partitioning information


## Spectral Clustering

Q: Why do this?

- 1. No need for points or distances as input
- 2. Can handle intuitive separation (k-means can't!)


Spectral Circles


Credit: William Fleshman

## Break \& Quiz

Q 1.1: We have two datasets: a social network dataset $S_{1}$ which shows which individuals are friends with each other, and an image dataset $S_{2}$. What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$
- B. graph-based on $S_{1}$ and k-means on $S_{2}$
- C. k-means on $\mathrm{S}_{1}$ and graph-based on $\mathrm{S}_{2}$
- D. hierarchical on $S_{1}$ and graph-based on $S_{2}$


## Break \& Quiz

Q 1.2: The CIFAR-10 dataset contains $32 \times 32$ images labeled with one of 10 classes. What could we use it for?
(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them


## Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA
- Note: PCA can be used for visualization, but not specifically designed for it
- Some algorithms specifically for visualization


Philip Slingerland

## Dimensionality Reduction \& Visualization

Typical dataset: MNIST

- Handwritten digits 0-9
- 60,000 images (small by ML standards)
- $28 \times 28$ pixel (784 dimensions)
- Standard for image experiments
- Dimensionality reduction?

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |

## Visualization: T-SNE

Typical dataset: MNIST

- T-SNE: project data into just 2 dimensions
- Try to maintain structure
- MNIST Example
- Input: $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 2D/3D $y_{1}, y_{2}, \ldots, y_{n}$



## T-SNE Algorithm: Step 1

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

Step 1:

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)} \quad p_{i j}=\frac{1}{2 n}\left(p_{j \mid i}+p_{i \mid j}\right)
$$

Intuition: probability that $x_{i}$ would pick $x_{j}$ as its neighbor under a Gaussian probability

## T-SNE Algorithm: Step 2

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

Step 2: set

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq \ell}\left(1+\left\|y_{k}-y_{\ell}\right\|^{2}\right)^{-1}}
$$

and minimize

$$
\sum_{i} \sum_{j} p_{j \mid i} \log \frac{p_{j \mid i}}{q_{j \mid i}}
$$

KL Divergence between p and q

## T-SNE Algorithm: Step 2

## More on step 2:

- We have two distributions $p, q . p$ is fixed
- $q$ is a function of the $y_{i}$ which we move around
- Move $y_{i}$ around until the KL divergence is small
- So we have a good representation!

KL Divergence between p and q

- Optimizing a loss function---we'll see more in supervised learning.


## T-SNE Examples

- Examples: (from Laurens van der Maaten)
- Movies:
https://lvdmaaten.github.io/tsne/examples/netflix_tsne.jpg



## T-SNE Examples

- Examples: (from Laurens van der Maaten)
- NORB:
https:///vdmaaten.github.io/tsne/examples/norb_tsne.jpg



## Visualization: T-SNE

## t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
- not a bad thing necessarily
- Downstream use

Good resource/credit:
https://www.thekerneltrip.com/statistics/tsne-vs-pca/


Gaussian blobs different sizes - PCA


## Break \& Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into $\mathrm{R}^{d}$ (ie, embedding)
- D. Yes, after running hierarchical clustering on them


## Short Intro to Density Estimation

Goal: given samples $x_{1}, \ldots, x_{\mathrm{n}}$ from some distribution $P$, estimate $P$.

- Compute statistics (mean, variance)
- Generate samples from $P$
- Run inference



## Simplest Idea: Histograms

Goal: given samples $x_{1}, \ldots, x_{\mathrm{n}}$ from some distribution $P$, estimate P.


Define bins; count \# of samples in each bin, normalize

## Simplest Idea: Histograms

Goal: given samples $x_{1}, \ldots, x_{\mathrm{n}}$ from some distribution $P$, estimate P.

## Downsides:

i) High-dimensions: most bins empty
ii) Not continuous

iii) How to choose bins?

## Kernel Density Estimation

Goal: given samples $x_{1}, \ldots, x_{\mathrm{n}}$ from some distribution $P$, estimate P.

Idea: represent density as combination of "kernels"

$$
\begin{array}{cc}
f(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right) & \begin{array}{l}
\text { Center at } \\
\text { each point }
\end{array} \\
\text { Kernel function: often } & \text { Width } \\
\text { Gaussian } & \text { parameter }
\end{array}
$$

## Kernel Density Estimation

Idea: represent density as combination of kernels

- "Smooth" out the histogram



