-

Q—-Q‘\““P

-

- : R TR BN -«»-&a--.z.m AATCAT ¢'-'ﬂn:-mﬂ‘4$&“ ESEIR R
. 2 : X — e b o - G . W by m‘. '. . Ry L i A Yoo 4 § =~
o e e MG R RS T | | i AT | 1--,~-.4 L
.(V.O :"7 - : .'\ LAe¥ Sa X ;‘ . ‘:-__..\ . ' ' . 3 ol ©F _ 3 o~ ' - - “: - ':~ I % - '.“, &-t‘ ‘IL_ qM ”-_% L"Mh
- — it [ Lo y 4 .‘ = '-‘-‘ ' . : ‘?"‘. - - - > - : : . ‘ .

WT

fl]ll!

CS 540 Introduction to Artificial Intelligence

Classification - KNN and Naive Bayes
Yudong Chen

University of Wisconsin-Madison

[Oct 14, 2021]

Slides created by Sharon Li [modified by Yudong Chen]



Announcement

Homework: HWS due next Tuesday

Thursday, Sept Machine Learning: Introduction
30

Tuesday, Oct 5 Machine Learning: Unsupervised Learning I

Thursday, Oct 7 Machine Learning: Unsupervised Learning II

Tuesday, Oct 12 Machine Learning: Linear regression

We will continue on supervised learning today



Today’s outline

 K-Nearest Neighbors
e Maximum likelihood estimation

 Naive Bayes
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Part |. K-nearest neighbors



Article Talk

wikirpiA | k-nearest neighbors algorithm

The Free Encycloped: '
e S1e¢ Cncyclopedia From Wikipedia, the free encyclopedia

Main page Not to be confused with k-means clustering.

A~

(source: wiki)



Example 1: Predict whether a user likes a song or not

model




Example 1: Predict whether a user likes a song or not

m Intensity

User Sharon

Tempo



Example 1: Predict whether a user likes a song or not
1-NN

ﬁ Intensit

User Sharon

© DisLike
® Like

Relaxed Fast

Tempo



Example 1: Predict whether a user likes a song or not
1-NN
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K-nearest neighbors for classification

* Input: Training data (X1 ¥1)s (X0, ¥2)s - 5 (X0 9,0)

d(x., XJ-); number of neighbors k; test data x*

1. Find the k training instances X; , . .., X; closest to X* under d(X;, X;)

2. Output y* as the majority class of y; , . .., y; . Break ties randomly.



Example 2: 1-NN for little green man
- Predict gender (M,F) from weight, height

- Predict age (adult, juvenile) from weight, height
Decision boundary

70F
651 female
__60r __60r Juvenile
= =
£ 5™ _ﬁ.ﬂ “
2D Ry
) )
< 50 < 50¢
adult
45} 4or
40r male : 40t *
80 90 100 110 30 90 100 110
weight (Ibs.) weight (Ibs.)

(a) classification by gender (b) classification by age



K-NN for regression

 What if we want regression?

* |nstead of majority vote, take average of neighbors’ labels

- Given test point X*, find its k nearest neighbors X; , ..., X;
1

- Output the predicted label Z(yil + ...+ )’ik)



How can we determine distance?

suppose all features are discrete

* Hamming distance: count the number of features for
which two instances differ



How can we determine distance?

suppose all features are discrete

* Hamming distance: count the number of features for
which two instances differ

suppose all features are continuous
* Euclidean distance: sum of squared differences

d(p,q) = i (p; — %‘)2
V&

* Manhattan c;llistance:

dp.q) = ), |p;—4q;
=1




How to pick the number of neighbors

e Split data into training and tuning sets
» (Classify tuning set with different k

* Pick k that produces least tuning-set error



Effect of k

What'’s the predicted label for the black dot
using 1 neighbor? 3 neighbors?



Quiz break

Q1-1: K-NN algorithms can be used for:

* A Only classification

* B Only regression

e C Both



Quiz break

Q1-2: Which of the following distance measure do we use In case
categorical variables in K-NN?

A Hamming distance
e B Euclidean distance

e C Manhattan distance



Quiz break

Q1-3: Consider binary classification in 2D where the intended
label of a point x = (x1, x2) Is positive if x1>x2 and negative
otherwise. Let the training set be all points of the form x = [44a,
3b] where a,b are integers. Each training item has the correct
label that follows the rule above. With a 1NN classifier (Euclidean
distance), which ones of the following points are labeled
positive”? Multiple answers.

. [5.52, 2.41]
. [8.47, 5.84]
. [7,8.17]

- [6.7,8.88]
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Part |I: Maximum Likelihood Estimation




Supervised Machine Learning

Non-parametric s Darametric
(e.g., KNN) |




Supervised Machine Learning

Statistical modeling approach

Labeled training
data (n examples)

(Xla yl)a (X29 )72), ¢ o o9 (Xn9 yn)

drawn independently from
a fixed underlying distribution
(also called the 1.1.d. assumption)



Supervised Machine Learning

Statistical modeling approach

Labeled training q Learning Classifier
data (n examples) algorithm #

(Xla }ﬁ)» (X29 )72), ¢ o o9 (Xn9 yn)

select f(é’) from a pool of models #

drawn independently from that best describe the data observed
a fixed underlying distribution

(also called the 1.1.d. assumption)



How to selectf c F?

¢ Maximum likelihood (best fits the data)
e Maximum a posteriori (best fits the data but incorporates prior assumptions)

e Optimization of ‘loss’ criterion (best discriminates the labels)



Maximum Likelihood Estimation: An Example

Flip a coin 10 times, how can you estimate 6 = p(Head)?

Intuitively, @ = 4/10 = 0.4



How good is 67

It depends on how likely it is to generate the observed data
X1, X9, ..., X (Let’s forget about label for a second)

Likelihood function L(Q) — Hi p(Xi | 9)

Under I.I.d assumption

Interpretation: How probable (or how likely) is the data given
the probabilistic model p,?



How good is 67

It depends on how likely it is to generate the observed data

X1, X9, ..., X (Let’s forget about label for a second)
Likelihood function L(6) = I1.p(Xx;| 0)
HT T H H

AN

L. (0)=0-(1-60)-(1-6)-0-0

Bernoulli distribution

L(O)



Log-likelihood function

L,(0)=0-(1-0)-(1-0)-0-6
= ONu . (1 — Q)M
| og-likelihood function
£ (0) = log L(6)
= Ny log @ + Nrlog(1 — 0)



Maximum Likelihood Estimation (MLE)

Find optimal 6* to maximize the likelihood function (and log-likelihood)

0 = arg max Ny log @ + N, log(1 — 6)

WO Ny Ne _ o o g N
N

0 0 1-6 r+ Ny

which confirms your intuition!



Maximum Likelihood Estimation: Gaussian Model
Fitting a model to heights of females
Observed some data (in inches): 60, 62, 53, 58,... € R

X715 X5 e ooy X}

Model class: Gaussian model A

o) = e (-8

So, what’s the MLE for the given data?



Estimating the parameters in a Gaussian

* Mean |
u = E[x] hence /i = —le-
t =1
e Variance ,
2 2 A2 1 ~AN2
o- =K [(x—,u) ] hence ¢ =—Z(xl-—,u)
t =1

courses.d2l.ai/berkeley-stat-157



Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): X;, X, ..., X, € R

Assume that the data is drawn from a Gaussian _/\

L(u,06%|X) = |n|p(X'ﬂ 6%) = |n| : eXp( (xi_ﬂ)z)
) — 7o Mo — ) T )
e 27O 20

=1

Fitting parameters is maximizing likelihood w.r.t /i, o’

(maximize likelihood that data was generated by model)

n
2
arg max XU, O
MLE gﬂ’ 13 !—! p(x;; 1, 6°)



Maximum Likelihood

» Estimate parameters by finding ones that explain the data
arg max Hp( /’ta 2) — arg min lOng(Xl, /’ta )
=1

. Decompose I|keI|hood

n

1 1
—log(276?) + —(x; — 2 — D og(2762) + — — U)°
;2 2(270%) + 5 (x; — )’ =~ log(2m0?) 2622@ )

1
Minimized for u=— ) X,

n
=1

courses.d2l.ai/berkeley-stat-157



Maximum Likelihood

» Estimating the variance

002762 + — ¥ (x. — u)?
5 10g(2707) 2(;22( M)



Maximum Likelihood

» Estimating the variance

n

~ log(2762) + _ 2 (x; — p)”

2 2072 —
» [ake derivatives with respect to it
2
02| - | 2—02—2—642(?6—/4)

= —Z(xl-—,u)z
L

courses.d2l.ai/berkeley-stat-157



MLE

lon via
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pxly=1)

p(x|y =0)
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Classification via MLE

j\/ — f(x) = arg max p(y | X) (Posterior)

(Prediction)



Classification via MLE

j\/ — f(x) = arg max p(y | X) (Posterior)
(Prediction)

px1y) - p(y)
— dIg INdX ————  (by Bayes’ rule)

y p(X)

= arg ymaX px|y)p(y)

Using labelled training data, learn class priors and class conditionals



Quiz break

Q2-2: True or False
Maximum likelihood estimation is the same regardless of whether we
maximize the likelihood or log-likelihood function.

e A True

e B False



Quiz break

Q2-3: Suppose the weights of randomly selected American female
college students are normally distributed with unknown mean ¢ and

standard deviation 6. A random sample of 10 American female college
students yielded the following weights in pounds: 115 122 130 127 149

160 152 138 149 180. Find a maximum likelihood estimate of .

« A 132.2
e B 142.2
e C 152.2
« D 162.2
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Example 1: Play outside or not?

* |f weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )



Example 1: Play outside or not?

* |f weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )
 Weather = {Sunny, Rainy, Overcast}

* Play = {Yes, No}
 Observed data {Weather, play on day m}, m={1,2,...,N}



Example 1: Play outside or not?

* |f weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )
 Weather = {Sunny, Rainy, Overcast}

* Play = {Yes, No}
 Observed data {Weather, play on day m}, m={1,2,...,N}

p( | Play) p(Play)
p(=¢ )

p(Play | -¢-)

Bayes rule



Example 1: Play outside or not?

 Step 1: Convert the data to a frequency table of Weather and Play

Weather (Play

Sunny No Frequency Table
Overcast |Yes Weather NO Yes
Rainy Yes Overcast 4
sunny Yes Rainy 3 2
Sunny Yes sunny 3
Overcast |Yes Grand Total 5 9
Rainy NO

Rainy NO

sunny Yes

Rainy Yes

sunny NO

Overcast |Yes

Overcast |Yes

Rainy NO

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/



Example 1: Play outside or not?

Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather |Play

Sunny No Frequency Table ‘ Likelihood table .l

Overcast |Yes Weather No Yes Weather No Yes

Rainy Yes Overcast 4 Overcast 4 =4/14 0.29
sunny Yes Rainy 3 2 Rainy 3 2 =5/14 0.36
Sunny  |Yes Sunny 3 Sunny 2 3 =5/14 0.36
Overcast |Yes Grand Total 5 9 All 5 9

Rainy  |No =5/14 | =9/14

Rainy NO 0.36 0.64

Sunny Yes

Rainy __|Yes p(Play = Yes) = 0.64

sunny NO

Overcast |Yes p( ‘ YeS) — 3/9 — 033

Overcast |Yes

Rainy NO

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/



Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes| ) "
=P( lYes)*P(Yes)/P( ¢¢) -

P(No| ) "
=P( @ |[No)"P(No)/P(¢r) =



Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes| )
=P( [Yes)*P(Yes)/P( )
=0.33%0.64/0.36
=0.6

P(No| )
=P( INo)*P(No)/P( )
=0.470.36/0.36
=0.4

P(Yes| =) > P(No| ‘©-) go outside and play!



Bayesian classification

j\/ — dI'g IMldX p(y | X) (Posterior)
(Prediction)
px1y) - p(y)
— dIg INdX ————  (by Bayes’ rule)
p(X)

= argmax p(x|y)p(y)



Bayesian classification
What if x has multiple attributes X = { X, ..., X, }

j\/ — argglaXp(y |X1, c o e Xk) (Posterior)

(Prediction)



Bayesian classification
What if x has multiple attributes X = { X, ..., X, }

j\/ — argglaXp(y |X1, c e e Xk) (Posterior)

(Prediction)

_ are max PXps - X 1Y) - POY) ) Baves e

Y p(Xla---axk)

4

Independent of y



Bayesian classification
What if x has multiple attributes X = { X, ..., X, }

j\/ — argglaXp(y |X1, c oo Xk) (Posterior)

(Prediction)

_ are max PXps - X 1Y) - PO) 4 Baves e

Y p(Xla---axk)

= arg Mmax pXy,.... X |y) p(y)

\ ) *
Y

Class conditional
likelihood

Class prior



Naive Bayes Assumption

Conditional independence of feature attributes
pX,.... X [ y)p(y) = I p(X; | y)p(y)

1

Easier to estimate
(using MLE!)




Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

A Attributes can be nominal or numeric
B Attributes are equally important
 C Attributes are statistically dependent of one another given the class value

D Attributes are statistically independent of one another given the class value

e E All of above



Quiz break

Q3-2: Consider a classification problem with two binary features,

X1, X2 € {0,1}. Suppose P(Y =y)=1/32, P(x1 = 1| Y =y) = y/46,
P(x2=11Y =y)=y/62. Which class will naive Bayes classifier produce
on a test item with x4 =1 and x2 = 07

* A 106
« B 206
 C 31
e D 32



Quiz break

Q3-3: Consider the following dataset showing the result whether a
person has passed or failed the exam based on various factors.
Suppose the factors are independent to each other. We want to classify
a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident

Studied

Sick

Result

Yes

No

No

Fall

Yes

No

Yes

Pass

No

Yes

Yes

Fall

No

Yes

No

Pass

Yes

Yes

Yes

Pass

e A Pass
e B Fall



What we’ve learned today...

 K-Nearest Neighbors
 Maximum likelihood estimation
* Bernoulli moqdel
* (Gaussian model
 Nalve Bayes

» Conditional independence assumption
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Thanks!

Based on slides from Sharon Li, Xiaojin (Jerry) Zhu, Yingyu Liang and James Mclnerney



