

CS 540 Introduction to Artificial Intelligence Classification - KNN and Naive Bayes

Yudong Chen
University of Wisconsin-Madison

[Oct 14, 2021]

Slides created by Sharon Li [modified by Yudong Chen]

Announcement

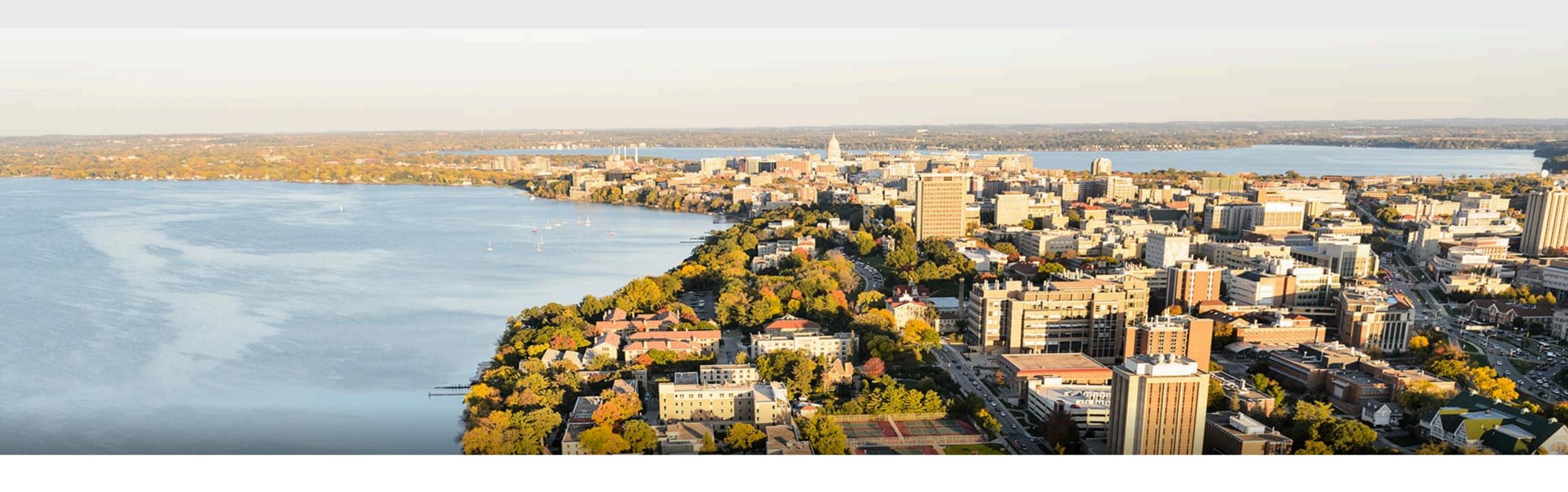
Homework: HW5 due next Tuesday

Thursday, Sept	Machine Learning: Introduction
Tuesday, Oct 5	Machine Learning: Unsupervised Learning I
Thursday, Oct 7	Machine Learning: Unsupervised Learning II
Tuesday, Oct 12	Machine Learning: Linear regression
Thursday, Oct 14	Machine Learning: K - Nearest Neighbors & Naive Bayes

We will continue on supervised learning today

Today's outline

- K-Nearest Neighbors
- Maximum likelihood estimation
- Naive Bayes



Part I: K-nearest neighbors

Main page

earnive

Article

Talk

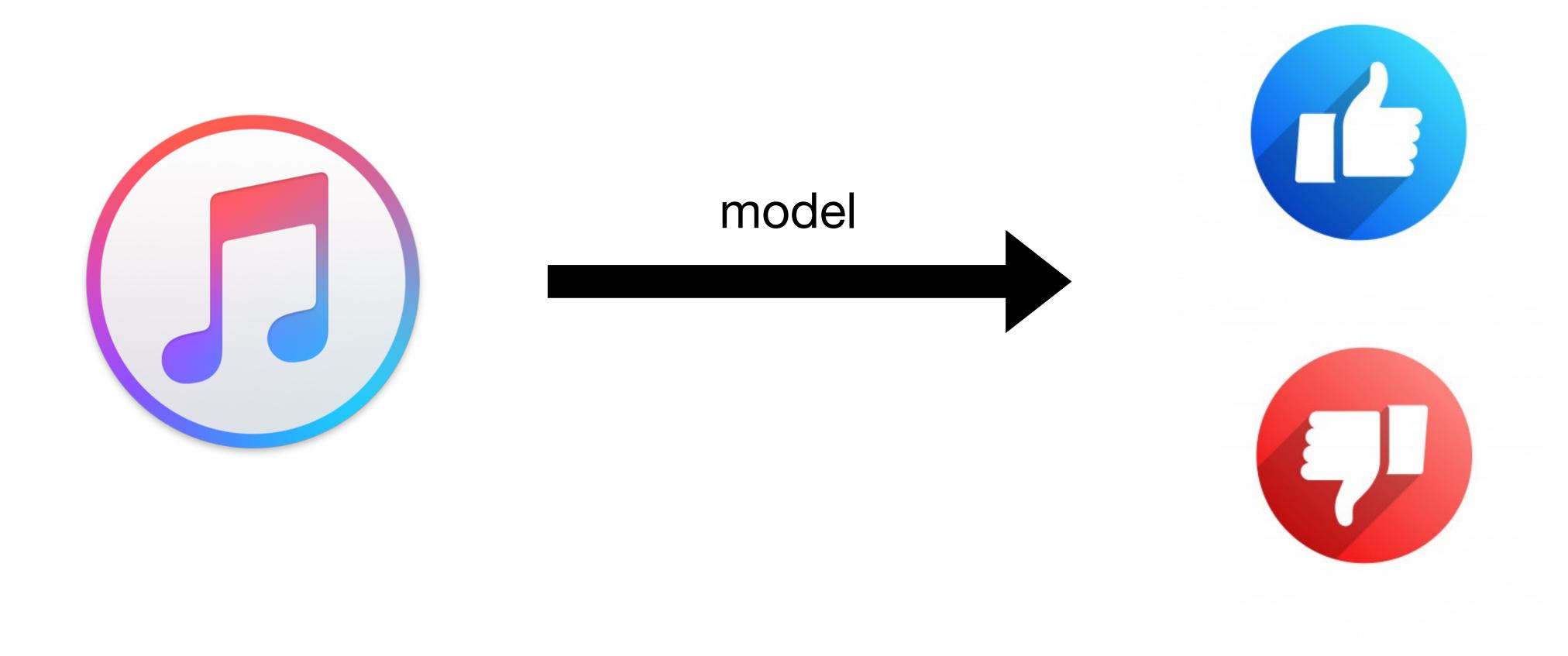
k-nearest neighbors algorithm

From Wikipedia, the free encyclopedia

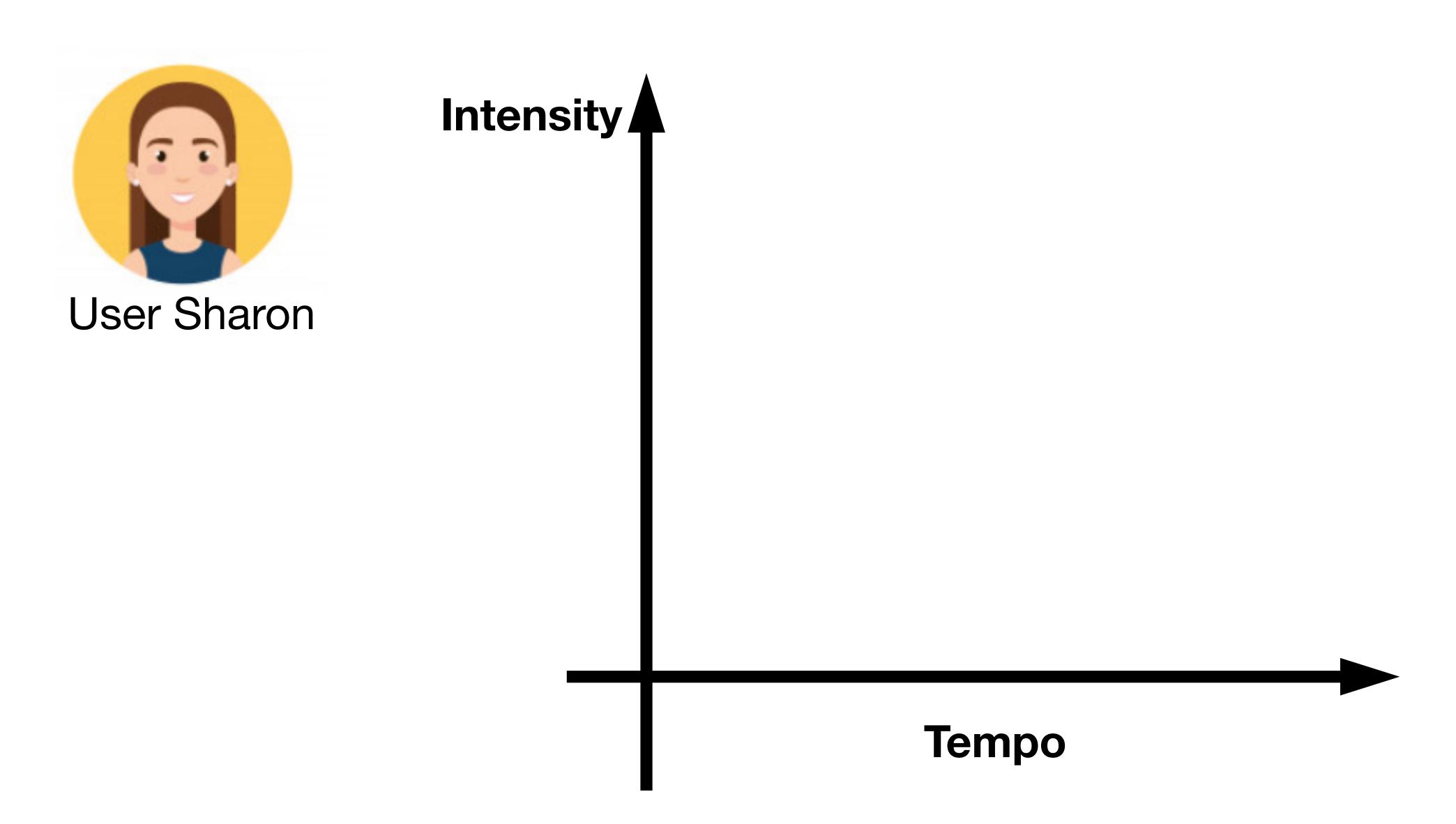
Not to be confused with k-means clustering.

(source: wiki)

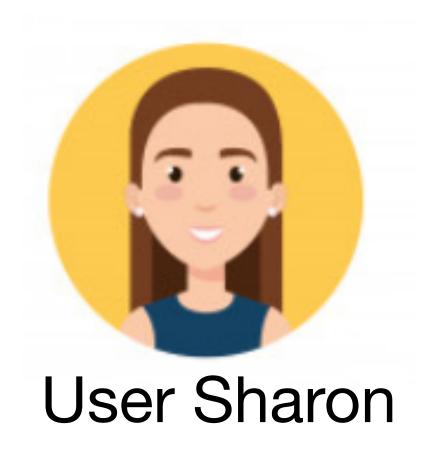
Example 1: Predict whether a user likes a song or not



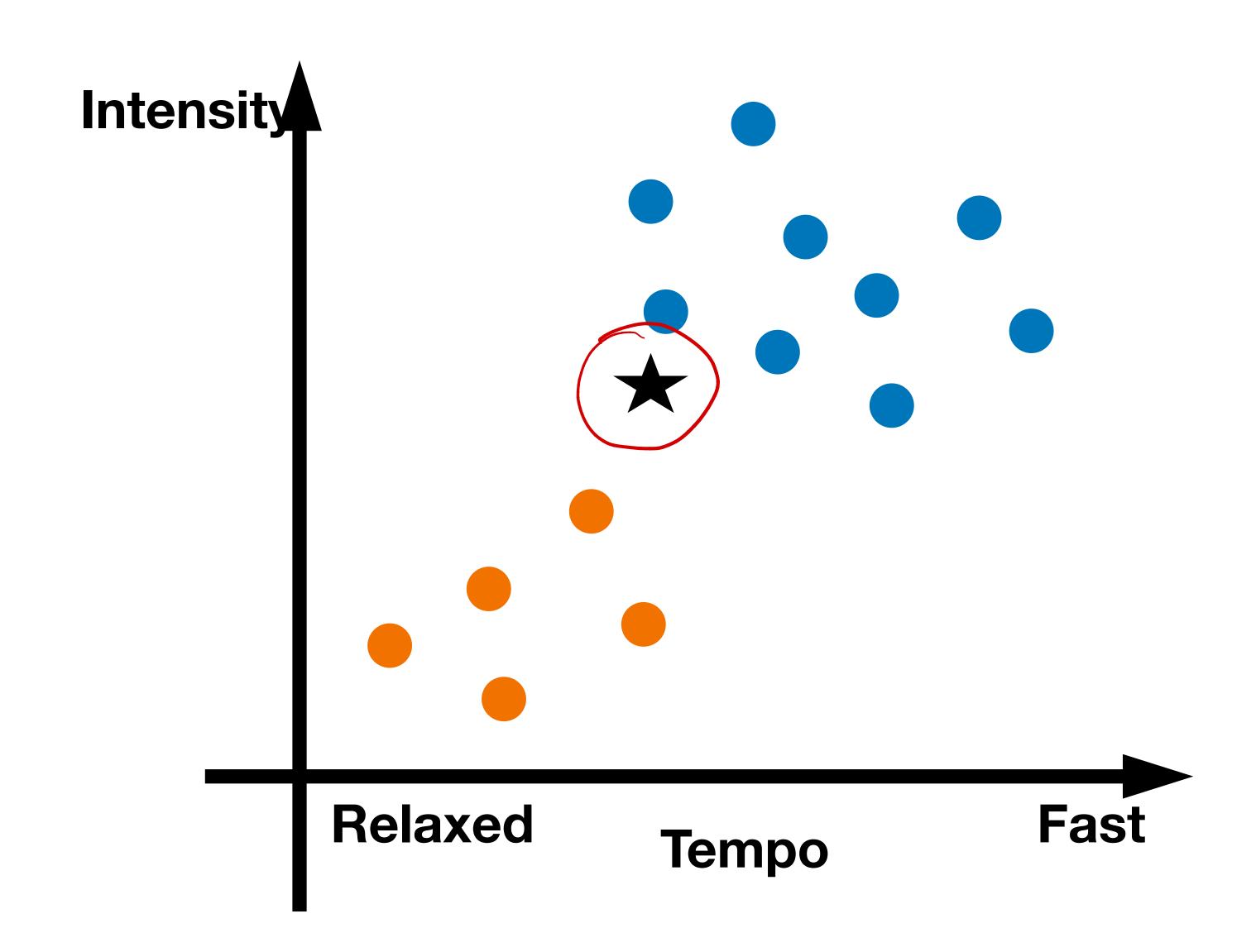
Example 1: Predict whether a user likes a song or not



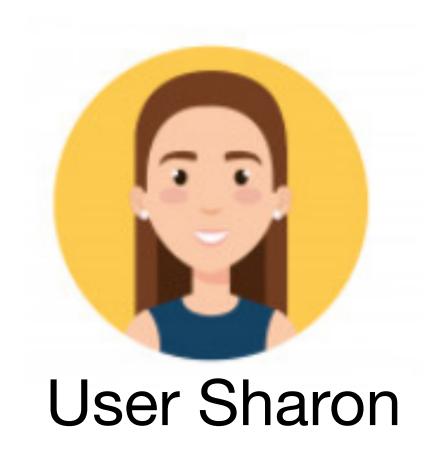
Example 1: Predict whether a user likes a song or not 1-NN



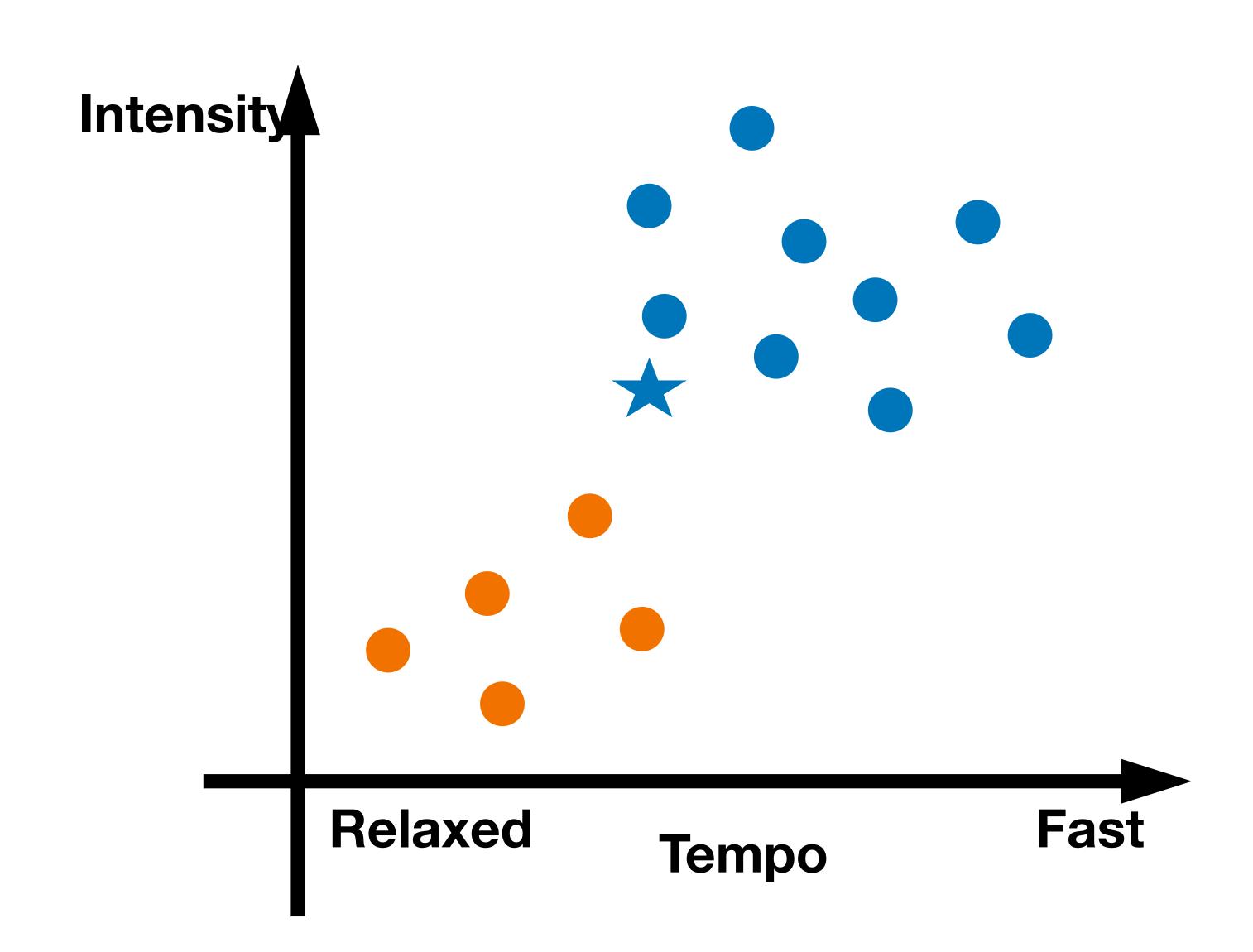
- DisLike
- Like



Example 1: Predict whether a user likes a song or not 1-NN



- DisLike
- Like

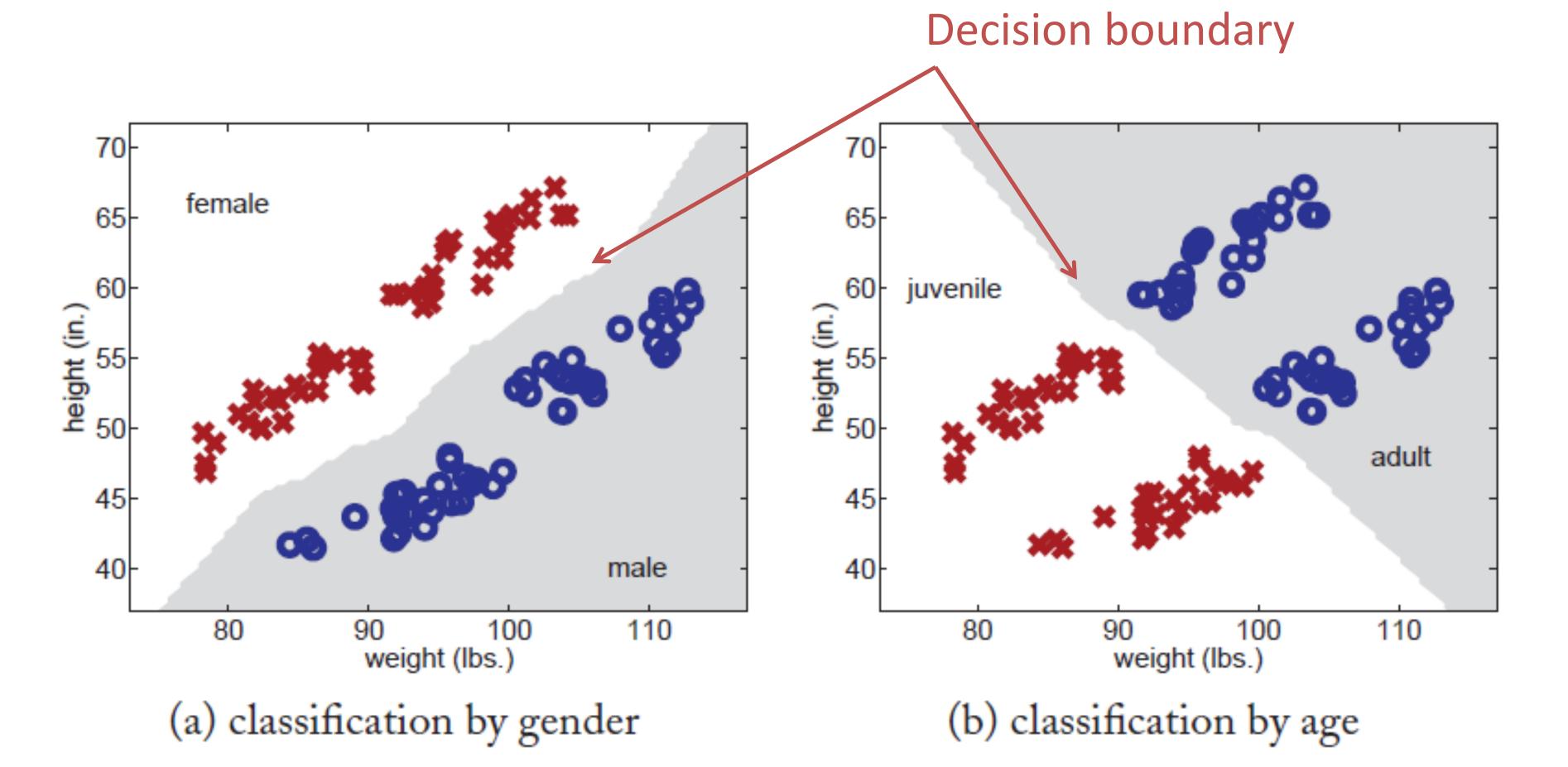


K-nearest neighbors for classification

- Input: Training data $(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \dots, (\mathbf{x}_n,y_n)$ Distance function $d(\mathbf{x}_i,\mathbf{x}_i)$; number of neighbors k; test data \mathbf{x}^*
- 1. Find the k training instances $\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_k}$ closest to \mathbf{x}^* under $d(\mathbf{x}_i, \mathbf{x}_j)$
- 2. Output y^* as the majority class of y_{i_1}, \ldots, y_{i_k} . Break ties randomly.

Example 2: 1-NN for little green man

- Predict gender (M,F) from weight, height
- Predict age (adult, juvenile) from weight, height



K-NN for regression

What if we want regression?

- Instead of majority vote, take average of neighbors' labels
 - Given test point \mathbf{x}^* , find its k nearest neighbors $\mathbf{X}_{i_1}, \ldots, \mathbf{X}_{i_k}$
 - Output the predicted label $\frac{1}{k}(y_{i_1}+\ldots+y_{i_k})$

How can we determine distance?

suppose all features are discrete

 Hamming distance: count the number of features for which two instances differ

How can we determine distance?

战争的一样和"松平的"

suppose all features are discrete

 Hamming distance: count the number of features for which two instances differ

which two instances differ
$$\frac{1}{2},\frac{1}{2}$$

$$\frac{1}{2},\frac{1}{2}$$
suppose all features are continuous

Euclidean distance: sum of squared differences

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} = ||P - Q||_2 \qquad Q_2 - d_i \text{ stance}$$
• Manhattan distance: city block distance $||P - Q||_2 = ||P - Q||_2$

 $d(\mathbf{p}, \mathbf{q}) = \sum |p_i - q_i|$

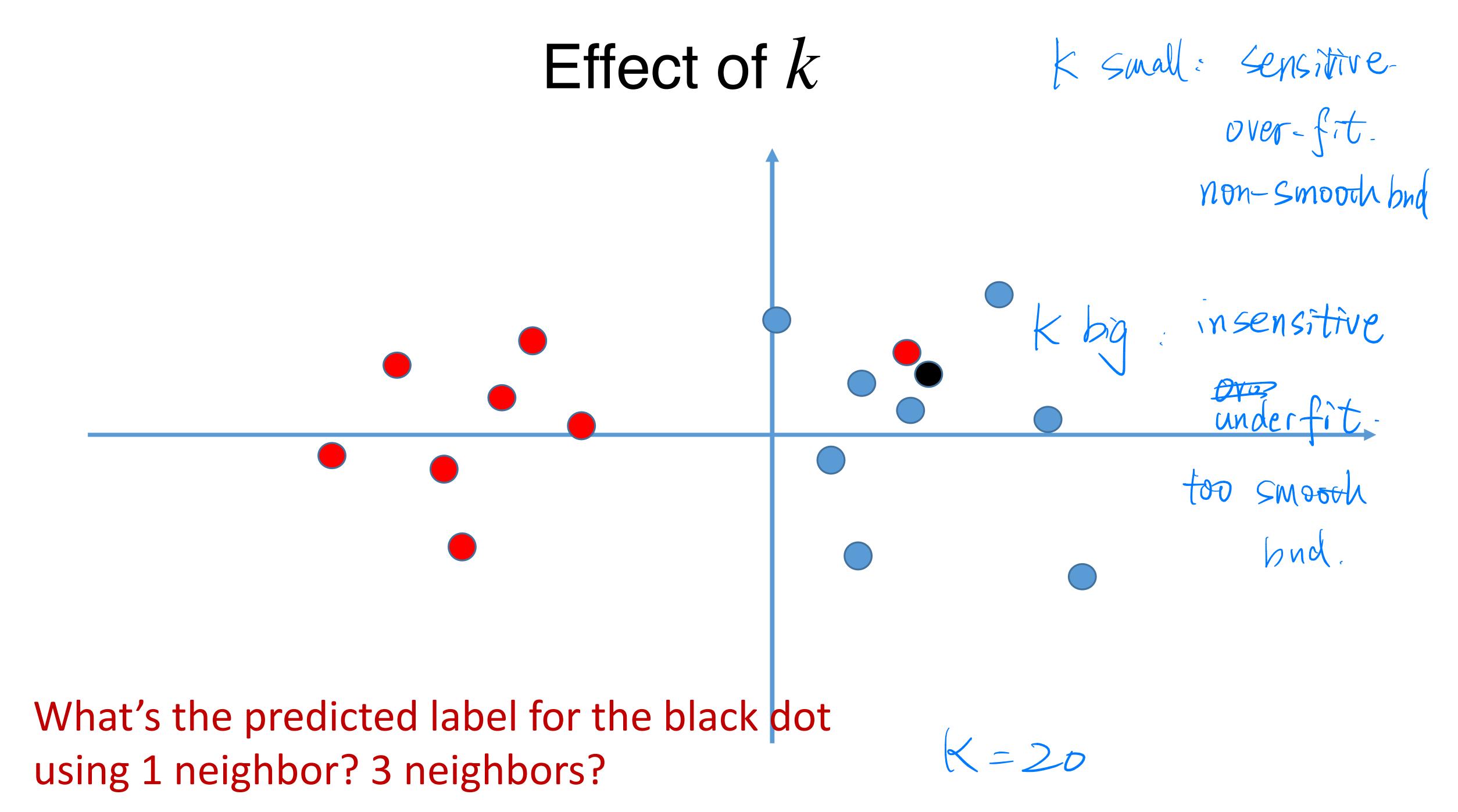
How to pick the number of neighbors

- Split data into training and tuning sets / Validation Sets
- Classify tuning set with different k
- Pick k that produces least tuning-set error

training set validation set test set.

80 (0 lo
60 20 20

Validation set. trainingset $\{(x_i,y_i),\ldots,(x_n;y_n)\}$ > (MARI, MARI), -- (MARM, MARM) > decision boundary. validation emor(k=1) validation error (K=2) Val-error (K=100) K=(00. smallest validation error.



Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Q1-2: Which of the following distance measure do we use in case categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-2: Which of the following distance measure do we use in case categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-3: Consider binary classification in 2D where the intended label of a point x = (x1, x2) is positive if x1>x2 and negative otherwise. Let the training set be all points of the form x = [4a, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- · [5.52, 2.41] (4, 3) 1=+
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Q1-3: Consider binary classification in 2D where the intended label of a point x = (x1, x2) is positive if x1>x2 and negative otherwise. Let the training set be all points of the form x = [4a, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

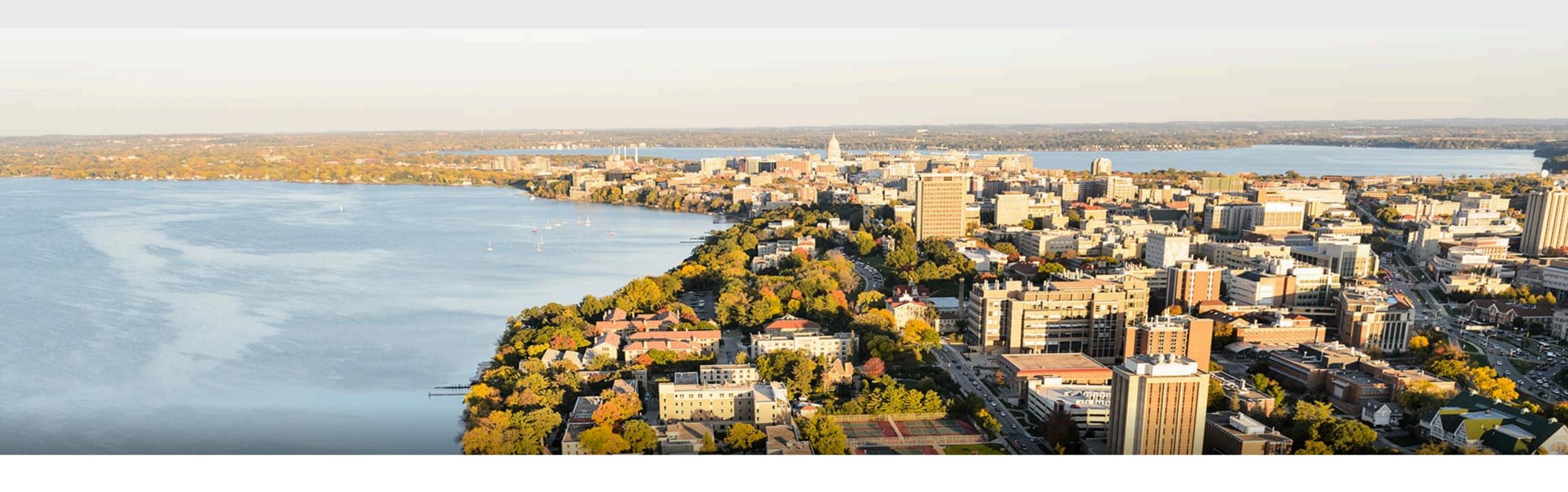
- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Nearest neighbors are

```
[4,3] => positive
```

[8,9] => negative

Individually.



Part II: Maximum Likelihood Estimation

Supervised Machine Learning

Non-parametric (e.g., KNN)

VS.

$$f(x) = Vote/average of K-nearest $\hat{y} = f(x) = \partial_0 + \partial_1 x_1 + \cdots + \partial_d x_d$.$$

Parametric

MLL

Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)

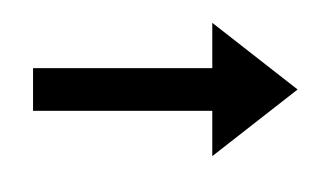
$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption)

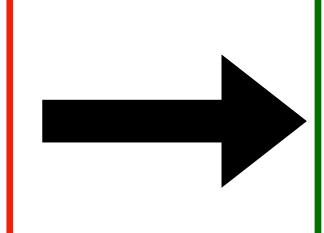
Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)



Learning algorithm



Classifier \hat{f}

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

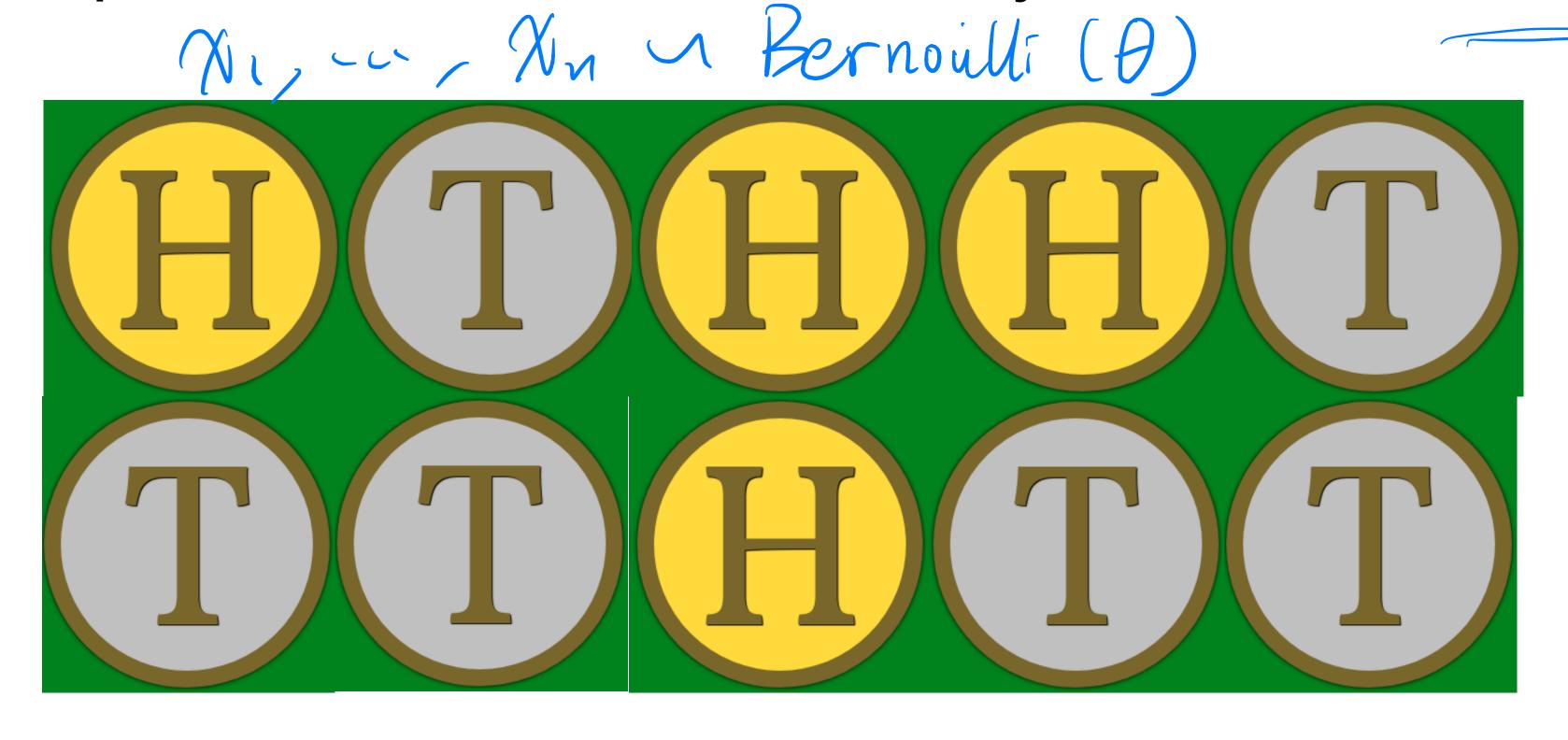
drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption) select $\hat{f}(\theta)$ from a pool of models \mathcal{F} that best describe the data observed

How to select $\hat{f} \in \mathcal{F}$?

- Maximum likelihood (best fits the data)
- Maximum a posteriori (best fits the data but incorporates prior assumptions)
- Optimization of 'loss' criterion (best discriminates the labels)

Maximum Likelihood Estimation: An Example

Flip a coin 10 times, how can you estimate $\theta = p(\text{Head})$?



Intuitively, $\theta = 4/10 = 0.4$

How good is θ ?

$$L(\theta) = P(x_i, x_i | \theta)$$

 $L(\theta) = P(\chi_1, \chi_N | \theta)$ It depends on how likely it is to generate the observed data

$$\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$$

(Let's forget about label for a second)

Likelihood function
$$L(\theta) = \prod_{i} p(\mathbf{x}_i | \theta)$$

Under i.i.d assumption

Interpretation: How probable (or how likely) is the data given the probabilistic model p_{θ} ?

How good is θ ?

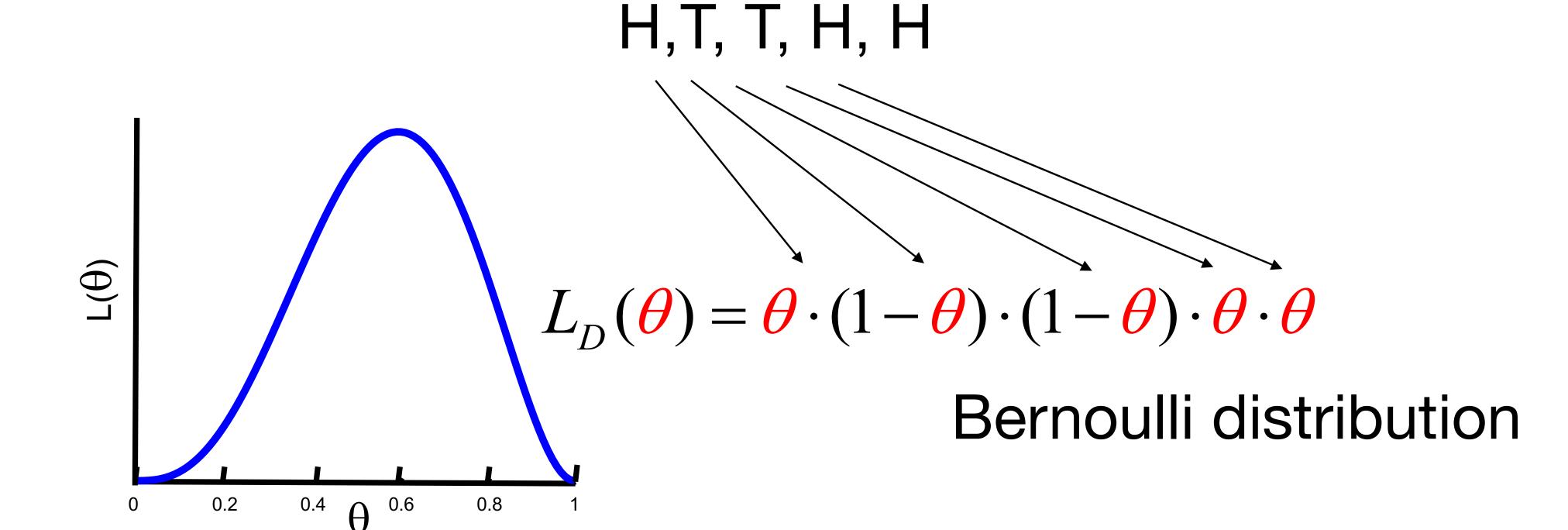
It depends on how likely it is to generate the observed data

$$\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$$

0.2

(Let's forget about label for a second)

Likelihood function $L(\theta) = \Pi_i p(\mathbf{x}_i | \theta)$



Log-likelihood function

$$L_{D}(\theta) = \underbrace{\theta \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta}_{= \theta^{N_{H}} \cdot (1 - \theta)^{N_{T}}}$$

Log-likelihood function

$$\mathcal{E}(\theta) = \log L(\theta)$$

$$= N_H \log \theta + N_T \log(1 - \theta)$$

Maximum Likelihood Estimation (MLE)

Find optimal θ^* to maximize the likelihood function (and log-likelihood)

$$\theta^* = \arg\max N_H \log\theta + N_T \log(1 - \theta)$$

$$\frac{\partial l(\theta)}{\partial \theta} = \frac{N_H}{\theta} - \frac{N_T}{1 - \theta} = 0 \quad \Longrightarrow \quad \theta^* = \frac{N_H}{N_T + N_H}$$

which confirms your intuition!

Maximum Likelihood Estimation: Gaussian Model

Fitting a model to heights of females

Observed some data (in inches): 60, 62, 53, 58,... ∈ ℝ

$$\{x_1, x_2, \ldots, x_n\}$$
 \vee Groussian \vee mean M

Variance 5²

Model class: Gaussian model

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \qquad \text{L}(\mu, \sigma^2) = \frac{n}{1-\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

So, what's the MLE for the given data?

Estimating the parameters in a Gaussian

Mean

$$\mu = \mathbf{E}[x] \text{ hence } \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance

$$\sigma^2 = \mathbf{E} \left[(x - \mu)^2 \right] \text{ hence } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Why?

Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): $x_1, x_2, \ldots, x_n \in \mathbb{R}$

Assume that the data is drawn from a Gaussian

$$L(\mu, \sigma^2 | X) = \prod_{i=1}^n p(x_i; \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

Fitting parameters is maximizing likelihood w.r.t μ , σ^2 (maximize likelihood that data was generated by model)

MLE

$$\underset{\mu, \sigma}{\operatorname{arg\,max}} \prod_{i=1}^{n} p(x_i; \mu, \sigma^2)$$

Maximum Likelihood

Estimate parameters by finding ones that explain the data

$$\arg \max_{\mu, \sigma^2} \prod_{i=1}^n p(x_i; \mu, \sigma^2) = \arg \min_{\mu, \sigma^2} -\log \prod_{i=1}^n p(x_i; \mu, \sigma^2)$$
empose likelihood
negative log likelihood

Decompose likelihood

$$\sum_{i=1}^{n} \left[\frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x_i - \mu)^2 \right] = \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$0 = \frac{3}{3} = 0 + \frac{1}{2\sigma^2} \sum_{i=1}^{N} 2(x_i - \mu)$$

Minimized for
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Maximum Likelihood

Estimating the variance

$$- \mathcal{L}(\mathcal{M}, \sigma^2) = \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Maximum Likelihood

Estimating the variance

$$\frac{n}{2}\log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

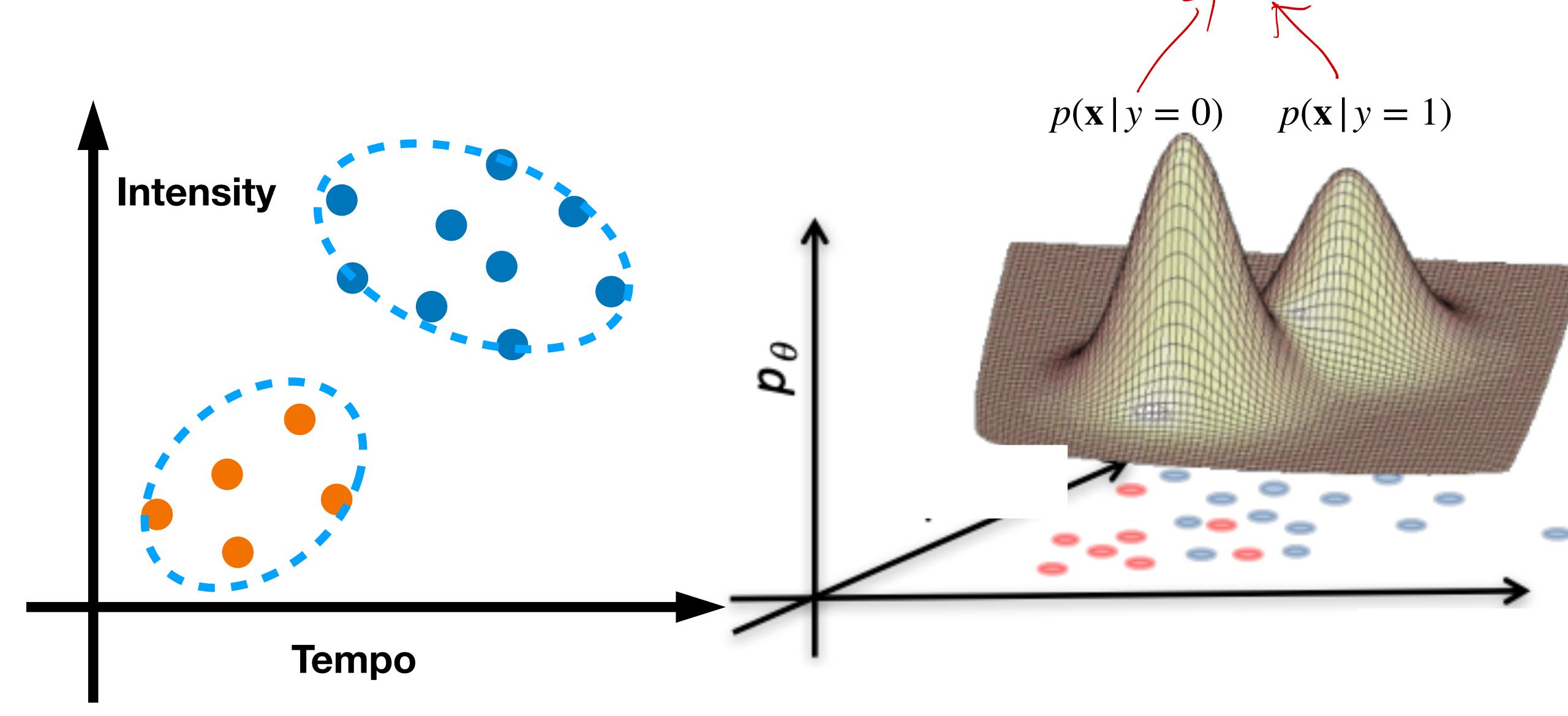
Take derivatives with respect to it

$$\partial_{\sigma^2}[\cdot] = \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\Longrightarrow \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Classification via MLE

class conditional probability



Classification via MLE

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg\max_{y} p(y \mid \mathbf{x})$$
 (Posterior)

Classification via MLE

Classification via MLE
$$\hat{y} = \hat{f}(\mathbf{x}) = \arg\max_{\mathbf{y}} p(y \mid \mathbf{x}) \quad \text{(Posterior)}$$

$$= \arg\max_{\mathbf{y}} \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \quad \text{(by Bayes' rule)}$$

$$= \underset{y}{\operatorname{arg\,max}} p(\mathbf{x} \mid y) p(y)$$

Using labelled training data, learn class priors and class conditionals

Bayes Classifier.

Q2-2: True or False

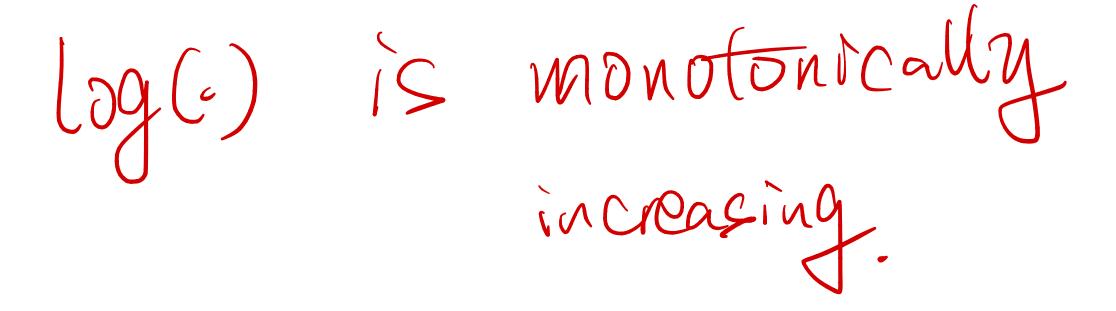
Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

Q2-2: True or False

Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

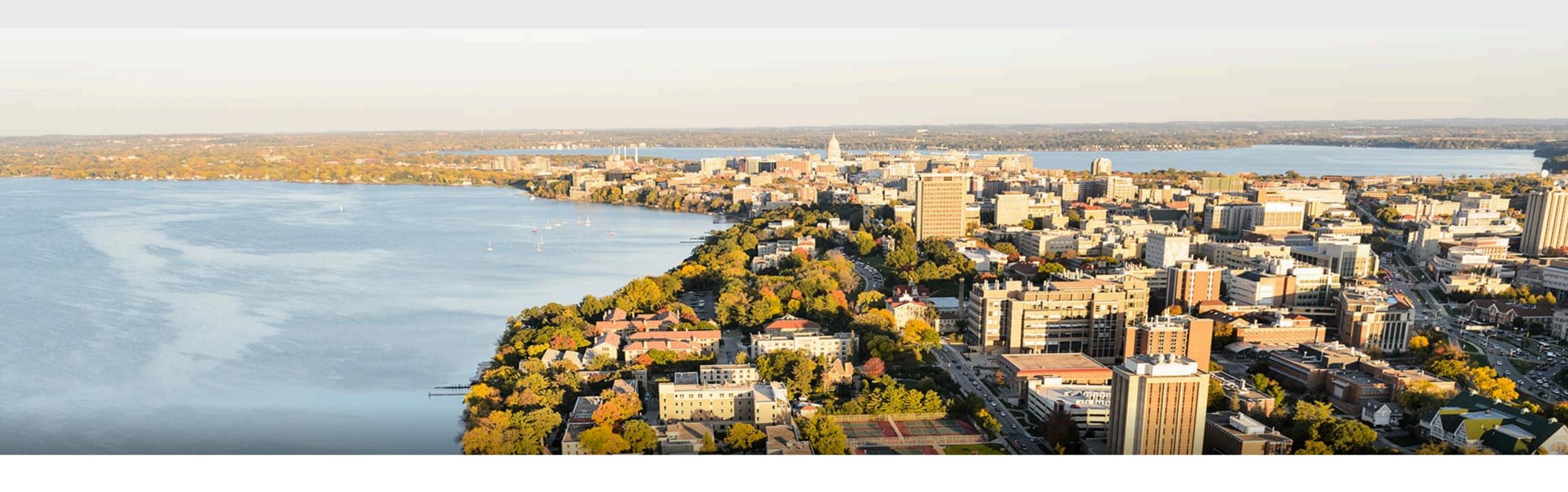


Q2-3: Suppose the weights of randomly selected American female college students are normally distributed with unknown mean μ and standard deviation σ . A random sample of 10 American female college students yielded the following weights in pounds: 115 122 130 127 149 160 152 138 149 180. Find a maximum likelihood estimate of μ .

- A 132.2
- B 142.2
- C 152.2
- D 162.2

Q2-3: Suppose the weights of randomly selected American female college students are normally distributed with unknown mean μ and standard deviation σ . A random sample of 10 American female college students yielded the following weights in pounds: 115 122 130 127 149 160 152 138 149 180. Find a maximum likelihood estimate of μ .

- A 132.2
- B 142.2
- C 152.2
- D 162.2



Part II: Naïve Bayes

 $= \arg\max p(\mathbf{x} | y)p(y)$

$$\hat{y} = \arg\max p(y \mid \mathbf{x}) \qquad \text{(Posterior)}$$

$$(Prediction)$$

$$= \arg\max \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \qquad \text{(by Bayes' rule)}$$

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior) (Prediction)

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y \mid X_1, \dots, X_k) \quad \text{(Posterior)}$$

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k \mid y) \cdot p(y)}{p(X_1, \dots, X_k)} \quad \text{(by Bayes' rule)}$$

$$\text{Independent of y}$$

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \underset{y}{\operatorname{arg}} \max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

$$= \underset{y}{\operatorname{arg\,max}} p(X_1, \dots, X_k | y) p(y)$$

Class conditional likelihood

Class prior

Naïve Bayes Assumption

Conditional independence of feature attributes

$$p(X_1, \dots, X_k | y)p(y) = \prod_{i=1}^k p(X_i | y)p(y)$$

$$p(y) = p(year) \qquad p(y=2000)$$
Easier to estimate
$$p(w_i | y=2016) \qquad \text{(using MLE!)}$$

$$p(w_i | y=2020)$$

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes |) vs. p(No |)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day *m*}, m={1,2,...,N}

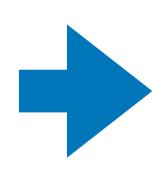
• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day *m*}, m={1,2,...,N}

• Step 1: Convert the data to a frequency table of Weather and Play

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

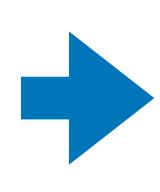


Frequency Table				
Weather	No	Yes		
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		

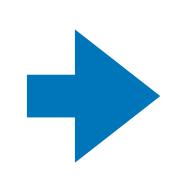
Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No



Frequency Table				
Weather No Yes				
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		



Like	elihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

$$p(Play = Yes) = 0.64$$

$$p(|Yes| Yes) = 3/9 = 0.33$$

Step 3: Based on the likelihoods and priors, calculate posteriors

Step 3: Based on the likelihoods and priors, calculate posteriors

```
P(Yes)
=P( Yes)*P(Yes)/P( Yes)
 =0.33*0.64/0.36
 =0.6
P(No
=P( No)*P(No)/P( )
 =0.4*0.36/0.36
 =0.4
```

P(Yes|) > P(No|) go outside and play!

Q3-1: Which of the following about Naive Bayes is incorrect?

Features

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

32-class

Quiz break

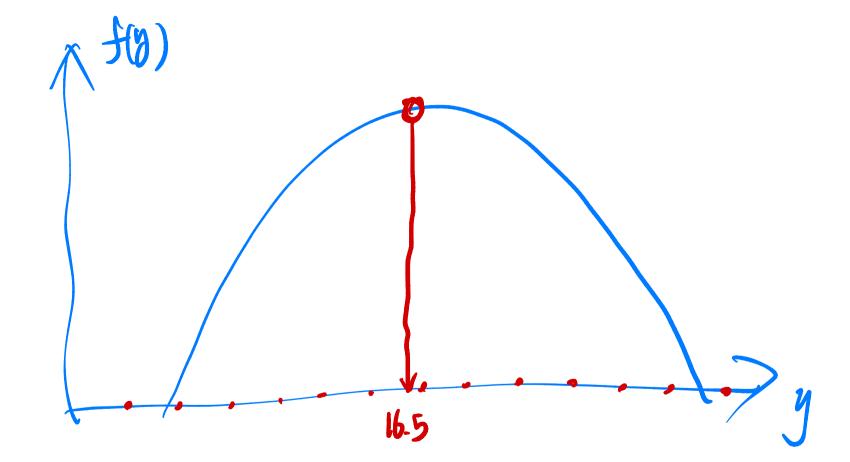
Q3-2: Consider a classification problem with two binary features,
$$x_1, x_2 \in \{0,1\}$$
. Suppose $P(Y = y) = 1/32$, $P(x_1 = 1|Y = y) = y/46$,

 $P(x_2 = 1 \mid Y = y) = y/62$. Which class will naive Bayes classifier produce on a test item with $x_1 = 1$ and $x_2 = 0$?

• A 16 arg max
$$P(x_{i=1}, x_{z=0}| Y=y)$$
. $P(Y=y)$

• C 31 = argmax
$$\frac{4}{46}\left(1-\frac{4}{62}\right)\cdot\frac{1}{32}=f(4)$$

$$f'(y) = \frac{1}{32} \left(\frac{1}{46} - \frac{2y}{46-62} \right) = 0 \implies y = 32$$



Q3-2: Consider a classification problem with two binary features,

$$x_1, x_2 \in \{0,1\}$$
. Suppose $P(Y = y) = 1/32$, $P(x_1 = 1|Y = y) = y/46$,

 $P(x_2 = 1 \mid Y = y) = y/62$. Which class will naive Bayes classifier produce

$$\frac{3}{34} = \frac{1}{46} - \frac{2}{46.62} y = 0$$

$$\Rightarrow y = 31$$

on a test item with
$$x_1 = 1$$
 and $x_2 = 0$?

• A 16

$$\int_{\mathcal{L}_1, \dots, \mathcal{L}_2} \left\{ \left(Y = \mathcal{Y} \mid Y_1 = 1 \right) \right\} dY_2 = 0$$

= arg max
$$P(X_1=1, X_2=0|Y=Y) P(Y=Y)$$

= arg max $P(X_1=1|Y=Y) P(X_2=0|Y=Y) P(Y=Y)$

$$= argmax \frac{y}{46} \cdot \left(1 - \frac{y}{62}\right) \cdot \frac{1}{32}$$

Q3-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A Pass
- B Fail

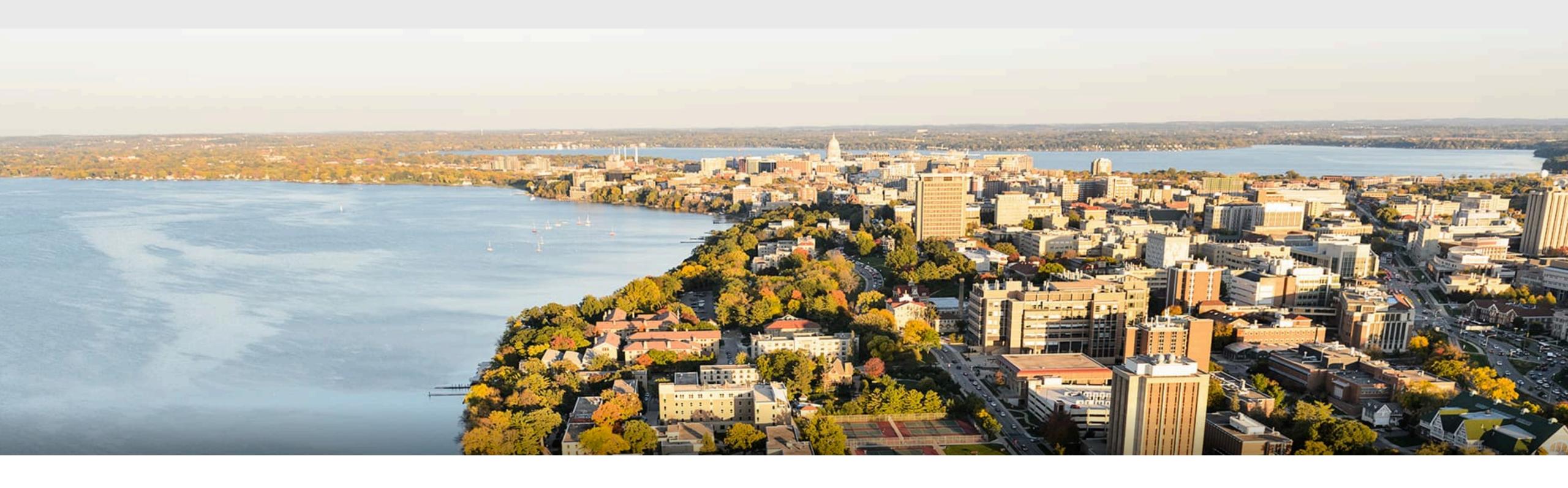
Q3-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A Pass
- B Fail

What we've learned today...

- K-Nearest Neighbors
- Maximum likelihood estimation
 - Bernoulli model
 - Gaussian model
- Naive Bayes
 - Conditional independence assumption



Thanks!

Based on slides from Sharon Li, Xiaojin (Jerry) Zhu, Yingyu Liang and James McInerney