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Announcement
• HW6 released today, due Nov 4 (Thursday)


• Midterm: Oct 28 (Thursday)



Today’s outline
• HW5 Review


• Recap: Bayes and Naive Bayes Classifiers


• Single-layer Neural Network (Perceptron)



Part I: Bayes and Naïve Bayes (Recap)



Bayesian classifier

̂y = arg max p(y |X1, . . . , Xk)

= arg max p(X1, . . . , Xk |y) ⋅ p(y)
p(X1, . . . , Xk)

= arg max p(X1, . . . , Xk |y)p(y)

(Posterior)

(by Bayes’ rule)

(Prediction)

Likelihood is hard to 
calculate for many attributes
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Bayesian classifier

̂y = arg max p(y |X1, . . . , Xk)

= arg max p(X1, . . . , Xk |y) ⋅ p(y)
p(X1, . . . , Xk)

= arg max p(X1, . . . , Xk |y) p(y)

(Posterior)

(by Bayes’ rule)
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Naïve Bayes Assumption

p(X1, . . . , Xk |y)p(y) = Πk
i=1p(Xi |y)p(y)

Conditional independence of feature attributes

Easier to estimate

(using MLE!)



Example 1: Play outside or not?

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes |       ) vs. p(No |       )
• Weather = {Sunny, Rainy, Overcast}

• Play = {Yes, No}

• Observed data {Weather, play on day m}, m={1,2,…,N}

p(Play |       ) = 
p(        | Play) p(Play)

p(      )
Bayes rule



Example 1: Play outside or not?

• Step 1: Convert the data to a frequency table of Weather and Play

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

• Step 2: Based on the frequency table, calculate likelihoods and priors

p(Play = Yes) = 0.64
p(     | Yes) = 3/9 = 0.33



Example 1: Play outside or not?

• Step 3: Based on the likelihoods and priors, calculate posteriors
P(Yes|      )
  =P(        |Yes) * P(Yes) / P(      )
  =0.33 * 0.64 / 0.36
  =0.6

P(No|      )
  =P(        |No) * P(No) / P(      )
  =0.4 * 0.36 / 0.36
  =0.4

P(Yes|      ) > P(No|      ) go outside and play!



Quiz break
Q1-3: Consider the following dataset showing the result whether a 
person has passed or failed the exam based on various factors. 
Suppose the factors are independent to each other. We want to classify 
a new instance with Confident=Yes, Studied=Yes, and Sick=No.

• A  Pass

• B  Fail

Confident Studied Sick Result
Yes No
 No Fail
Yes No Yes Pass
No Yes Yes Fail
No Yes No Pass
Yes Yes Yes Pass
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Q1-3: classify Confident=Yes, Studied=Yes, and Sick=No.
Confident Studied Sick Result

Yes No
 No Fail
Yes No Yes Pass
No Yes Yes Fail
No Yes No Pass
Yes Yes Yes Pass

P(Y = pass |X1 = 1, X2 = 1, X3 = 0)
∝ P(X1 = 1 |Y = pass) ⋅ P(X2 = 1 |Y = pass) ⋅ P(X3 = 0 |Y = pass) ⋅ P(Y = pass)

= 2
3 ⋅ 2

3 ⋅ 2
3 ⋅ 3

5

P(Y = fail |X1 = 1, X2 = 1, X3 = 0)
∝ P(X1 = 1 |Y = fail) ⋅ P(X2 = 1 |Y = fail) ⋅ P(X3 = 0 |Y = fail) ⋅ P(Y = fail)

= 1
2 ⋅ 1

2 ⋅ 1
2 ⋅ 2

5



Part I: Single-layer Neural Network



How to classify 
Cats vs. dogs?

 



Inspiration from neuroscience
- Inspirations from human brains

- Networks of simple and homogenous units

(wikipedia)



Perceptron

Cats vs. dogs?

Input Output 

w1
w2

wd

x1

x2

xd



Linear Perceptron (=linear regression)
• Given input    , weight     and bias    , perceptron outputs:x w b

Cats vs. dogs?

fw,b(x) = ⟨w, x⟩ + b

Input Output 

w1
w2

wd

x1

x2

xd



Perceptron
• Given input    , weight     and bias    , perceptron outputs:

fw,b(x) = σ (⟨w, x⟩ + b) σ(z) = {1 if z > 0
0 otherwise

x w b

Input 

Cats vs. dogs?

Activation function

Output 

w1
w2

wd

x1

x2

xd



Perceptron
• Goal: learn parameters  and b to 

minimize the classification error  
w = {w1, w2, . . . , wd}

Input Output 

w1
w2

wd

x1

x2

xd

Cats vs. dogs?



Training the Perceptron



From wikipedia

Perceptron

Iteration
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From wikipedia

Perceptron

Iteration



Learning AND function using perceptron

The perceptron can learn an AND function 

0 1

1

x1 = 1,x2 = 1,y = 1
x1 = 1,x2 = 0,y = 0
x1 = 0,x2 = 1,y = 0
x1 = 0,x2 = 0,y = 0
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The perceptron can learn an AND function 

0 1

1



Learning AND function using perceptron
The perceptron can learn an AND function 

0 1

1

Output 

w2

w1
σ(x1w1 + x2w2 + b)

σ(z) = {1 if z > 0
0 otherwise

What’s w and b?
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0 1

1

Output 

w2

w1
σ(x1w1 + x2w2 + b)

σ(z) = {1 if z > 0
0 otherwise

w1 = 1,w2 = 1,b = − 1.5



Learning OR function using perceptron

The perceptron can learn an OR function 

0 1

1

x1 = 1,x2 = 1,y = 1
x1 = 1,x2 = 0,y = 1
x1 = 0,x2 = 1,y = 1
x1 = 0,x2 = 0,y = 0
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Learning OR function using perceptron
The perceptron can learn an OR function 

0 1

1

Output 

w2

w1
σ(x1w1 + x2w2 + b)

σ(z) = {1 if z > 0
0 otherwise

w1 = 1,w2 = 1,b = − 0.5



Learning NOT function using perceptron
The perceptron can learn NOT function (single input) 

0 1

Output 
w1 σ(xw1 + b)

σ(z) = {1 if z > 0
0 otherwise

w1 = − 1,b = 0.5

x



XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function 
(neurons can only generate linear separators)

This contributed to the first AI winter
0 1

1



Brief history of neural networks



Quiz Break



Quiz Break

Answer: A. All units in a linear perceptron are linear. Thus, the model 
can not present non-linear functions. 




Quiz Break
Perceptron can be used for representing: 

A. AND function

B. OR function

C. XOR function

D. Both AND and OR function
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Step Function activation

Step function is discontinuous, which 
cannot be used for gradient descent 

σ(z) = {1 if z > 0
0 otherwise

z



Sigmoid/Logistic Activation

Map input into [0, 1], a soft version of 

sigmoid(z) = 1
1 + exp(−z)

σ(z) = {1 if z > 0
0 otherwise

z

z



Logistic regression
x ∈ ℝd, y = {−1, + 1}

p(y = 1 |x) = σ(wTx) = 1
1 + exp(−wTx)

p(y = − 1 |x) = 1 − σ(wTx) = 1
1 + exp(wTx)

z

z



Logistic regression

Training: maximize the likelihood (the conditional probability)

max
w ∑

i
log 1

1 + exp(−yiwTxi)

Given: {(xi, yi)}n
i=1



Class +1

Class -1

Logistic regression
Given: {(xi, yi)}n

i=1

When training data is linearly 
separable, many solutions

Training: maximize the likelihood (the conditional probability)



Logistic regression

Training: maximize the regularized likelihood

min
w ∑

i
(− log 1

1 + exp(−yiwTxi) ) + λ
2 ∥w∥2

2

Given: {(xi, yi)}n
i=1

• Convex optimization

• Solve via (stochastic) gradient descent

• Related to maximum A posteriori (MAP) estimate



Tanh Activation

Map inputs into (-1, 1)

tanh(z) = 1 − exp(−2z)
1 + exp(−2z)

z

z



ReLU Activation

ReLU: Rectified Linear Unit (commonly used in modern 
neural networks) ReLU(z) = max(z,0)

z

z



Quiz Break

Which one of the following is valid activation function

a) Step func*on
b) Sigmoid func*on 
C) ReLU func*on 
D) all of above
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Multi-layer 
Perceptron

Coming Next:



Thanks!
Based on slides from Sharon Li, Xiaojin (Jerry) Zhu and Yingyu Liang, and Alex Smola: https://courses.d2l.ai/
berkeley-stat-157/units/mlp.html



Thanks!
Based on slides from Sharon Li, Xiaojin (Jerry) Zhu and Yingyu Liang, and Alex Smola: https://courses.d2l.ai/
berkeley-stat-157/units/mlp.html


