

CS 540 Introduction to Artificial Intelligence Neural Networks (I): Perceptron Yudong Chen

Slides created by Sharon Li [modified by Yudong Chen]

University of Wisconsin-Madison

Oct 19, 2021

Announcement

- HW6 released today, due Nov 4 (Thursday)
- Midterm: Oct 28 (Thursday)

- Online. 90 min within 24 hours

- Cover NNI (next Tuesday's lecture).

- Will post sample questions.

Today's outline

- HW5 Review
- Recap: Bayes and Naive Bayes Classifiers
- Single-layer Neural Network (Perceptron)

Part I: Bayes and Naïve Bayes (Recap)

Bayesian classifier

$\hat{y} = \arg \max_{y} p(y | X_1, \dots, X_k)$ (Prediction)

(Posterior)

Bayesian classifier

(by Bayes' rule)

Bayesian classifier

(by Bayes' rule)

Class prior

Naïve Bayes Assumption

Conditional independence of feature attributes

$p(X_1, \ldots, X_k | y) p(y) = \prod_{i=1}^k p(X_i | y) p(y)$ Easier to estimate (using MLE!) or Histogram/counting

Example 1: Play outside or not?

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

p(Play |) =

p(Play) p(Play)

Example 1: Play outside or not?

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play	
Sunny	No	
Overcast	Yes	
Rainy	Yes	
Sunny	Yes	
Sunny	Yes	
Overcast	Yes	
Rainy	No	
Rainy	No	
Sunny	Yes	
Rainy	Yes	
Sunny	No	
Overcast	Yes	
Overcast	Yes	
Rainy	No	
		/

Frequ	ency Tabl	e	Like	elihood tab	le		
Weather	No	Yes	Weather	No	Yes		
Overcast		4	Overcast		4	=4/14	Τ
Rainy	3	2	Rainy	3	2	=5/14	Τ
Sunny	2	3	Sunny	2	3	=5/14	T
Grand Total	5	9	All	5	9		
				=5/14	=9/14]	
				0.36	0.64]	

Step 1: Convert the data to a frequency table of Weather and Play

p(Play = Yes) = 0.64p(| Yes) = 3/9 = 0.33

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes) =P([Yes) * P(Yes) / P([)) =0.33 * 0.64 / 0.36=0.6

P(No|) =P(💓 INo) * P(No) / P(💓) $=0.4 \times 0.36 / 0.36$ =0.4

Quiz break

Q1-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

(Confident	Studied	Sick	R
	Yes	No	No	
	Yes	No	Yes	F
	No	Yes	Yes	
	No	Yes	No	F
	Yes	Yes	Yes	F

lesult Fail Pass Fail Dass Pass

- A Pass
- B Fail

Quiz break

Q1-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

		-	
Confident	Studied	Sick	R
Yes	No	No	
Yes	No	Yes	F
No	Yes	Yes	
No	Yes	No	F
Yes	Yes	Yes	F

lesult Fail Pass Fail Dass Pass

- A Pass
- B Fail

Q1-3: classify Confident=Yes, Studied=Yes, and Sick=No.

		Xs	Ť
Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

 $P(Y=1 | X_1=1, X_2=1, X_3=0)$ $= P(X_{1}=1|Y=1) P(X_{2}=1|Y=1) P(X_{3}=0|Y=1) P(Y=1)/...$ = = = = = . = / $P(Y=0 | X_1=1, X_2=1, X_3=0)$ predict "Pass"

Q1-3: classify Confident=Yes, Studied=Yes, and Sick=No.

$$P(Y = pass | X_1 = 1, X_2 = 1, X_3 = 0)$$

$$\propto P(X_1 = 1 | Y = pass) \cdot P(X_2 = 1 | Y = 1)$$

$$= \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{3}{5}$$

 $P(Y = \text{fail} | X_1 = 1, X_2 = 1, X_3 = 0)$ $\propto P(X_1 = 1 | Y = \text{fail}) \cdot P(X_2 = 1 | Y = \text{fail}) \cdot P(X_3 = 0 | Y = \text{fail}) \cdot P(Y = \text{fail})$ 1 1 1 2 $= \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{5}$

Confident	Studied	Sick	Resi
Yes	No	No	Fai
Yes	No	Yes	Pas
No	Yes	Yes	Fai
No	Yes	No	Pas
Yes	Yes	Yes	Pas

 $pass) \cdot P(X_3 = 0 | Y = pass) \cdot P(Y = pass)$

Part I: Single-layer Neural Network

How to classify Cats vs. dogs?

Inspiration from neuroscience

- Inspirations from human brains - Networks of simple and homogenous units

(wikipedia)

Cats vs. dogs?

Linear Perceptron (=linear regression) • Given input x, weight w and bias b, perceptron outputs: $f_{\mathbf{w},b}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$ $= \chi_1 \psi_1 + \chi_2 \psi_2 + \cdots + \chi_d \psi_d + b.$

Cats vs. dogs?

Cats vs. dogs?

• Given input x, weight w and bias b, perceptron outputs: $f_{\mathbf{w},b}(\mathbf{x}) = \sigma \left(\langle \mathbf{w}, \mathbf{x} \rangle + b \right) \qquad \sigma(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$ $= \begin{cases} 1 & \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{2} & \sqrt{2} \end{cases}$ x_1

• Goal: learn parameters $\mathbf{W} = \{w_1, w_2, \dots, w_d\}$ and b to minimize the classification error

Cats vs. dogs?

Training the Perceptron

Perceptron Algorithm Initialize $\vec{w} = \vec{0}$ while TRUE do m = 0for $(x_i, y_i) \in D$ do if $y_i(\vec{w}^T \cdot \vec{x_i}) \leq 0$ then // If the pair $(\vec{x_i}, y_i)$ is misclassified $\vec{w} \leftarrow \vec{w} + y\vec{x}$ $\begin{array}{c} \hline m \leftarrow m+1 \\ \hline m \leftarrow m+1 \\ \hline m \leftarrow w+1 \\ \hline m \leftarrow w + \alpha; \\ \hline m \leftarrow w$ end if end for if m = 0 then break end if end while

Yi=1,	$W^T N_i < D$	2	classif erro-
y =-1,	$w w_{\bar{v}} > 0$		for i-

Initialize \vec{w} . $\vec{w} = 0$ misclassifies everything Keep looping

// Count the number of misclassifications, m // Loop over each (data, label) pair in the dataset,

// Update the weight vector \vec{w}

Break out of the while-loop

Otherwise, keep looping!

From wikipedia

From wikipedia

From wikipedia

Learning AND function using perceptron

The perceptron can learn an AND function $\mathcal{U} = \mathcal{X}_{\mathcal{U}} \wedge \mathcal{X}_{\mathcal{Z}}$

 $x_1 = 1, x_2 = 1, y = 1$ $x_1 = 1, x_2 = 0, y = 0$ $x_1 = 0, x_2 = 1, y = 0$ $x_1 = 0, x_2 = 0, y = 0$

Learning AND function using perceptron The perceptron can learn an AND function

Learning AND function using perceptron The perceptron can learn an AND function

W_1 Output $\sigma(x_1w_1 + x_2w_2 + b)$ W_2 $\sigma(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$ $\vec{W} = (W, Wz)$

What's w and b?

Learning AND function using perceptron The perceptron can learn an AND function

 $w_1 = 1, w_2 = 1, b = -1.5$

Learning OR function using perceptron The perceptron can learn an OR function $\mathcal{Y} = \chi_{\mathcal{U}} \mathcal{Y}_{\mathcal{Z}}$ $x_1 = 1, x_2 = 1, y = 1$ $x_1 = 1, x_2 = 0, y = 1$ $x_1 = 0, x_2 = 1, y = 1$ $x_1 = 0, x_2 = 0, y = 0$

Learning OR function using perceptron The perceptron can learn an OR function

 W_1

Output $\sigma(x_1w_1 + x_2w_2 + b)$ $\sigma(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$

What's w and b?

Learning OR function using perceptron The perceptron can learn an OR function

XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)

0

This contributed to the first AI winter

Brief history of neural networks

Consider the linear perceptron with x as the input. Which function can the linear perceptron compute?

(1) y = ax + b(2) $y = ax^2 + bx + c$

A. (1) B. (2) C. (1)(2) D. None of the above

compute?

- (1) y = ax + b(2) $y = ax^2 + bx + c$
- A. (1) B. (2) C. (1)(2)
- D. None of the above

Answer: A. All units in a linear perceptron are linear. Thus, the model can not present non-linear functions.

Consider the linear perceptron with x as the input. Which function can the linear perceptron

Perceptron can be used for representing:

- A. AND function
- B. OR function
- C. XOR function
- Both AND and OR function

Perceptron can be used for representing:

- A. AND function
- B. OR function
- C. XOR function
- **Both AND and OR function**

NOT

Step Function activation

Step function is discontinuous, which cannot be used for gradient descent

0.5

$\sigma(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$

Sigmoid/Logistic Activation

 $p(\mathbf{y} = 1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$ $p(\mathbf{y} = -1 | \mathbf{x}) = 1 - \sigma(\mathbf{w}^T \mathbf{x}) = 0$ 1.0 0.8 (Z) 0.6 0.4 0.2 0.0 -8

Logistic regression Given: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Training: maximize the likelihood (the conditional probability)

$\max_{\mathbf{w}} \sum_{i} \log \frac{1}{1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i)}$

Logistic regression Given: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Training: maximize the likelihood (the conditional probability) Class +1 When training data is linearly separable, many solutions Class -1

Logistic regression Given: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

- Convex optimization
- Solve via (stochastic) gradient descent
- Related to maximum A posteriori (MAP) estimate

Tanh Activation

Map inputs into (-1, 1)

 $tanh(z) = \frac{1 - exp(-2z)}{1 + exp(-2z)} = \left(\text{Sigmoid}(z) - \frac{1}{2} \right)^{2}$

ReLU Activation

ReLU: Rectified Linear Unit (commonly used in modern neural networks) $\operatorname{ReLU}(z) = \max(z,0)$

Which one of the following is valid activation function

a) Step function b) Sigmoid function C) ReLU function D) all of above

Which one of the following is valid activation function

a) Step function b) Sigmoid function C) ReLU function D) all of above

Coming Next:

Multi-layer Perceptron

Thanks!

Based on slides from Sharon Li, Xiaojin (Jerry) Zhu and Yingyu Liang, and Alex Smola: https://courses.d2l.ai berkeley-stat-157/units/mlp.html

Thanks!

Based on slides from Sharon Li, Xiaojin (Jerry) Zhu and Yingyu Liang, and Alex Smola: https://courses.d2l.ai berkeley-stat-157/units/mlp.html

