

CS 540 Introduction to Artificial Intelligence Neural Networks (III) Yudong Chen University of Wisconsin-Madison

Slides created by Sharon Li [modified by Yudong Chen]

Oct 26, 2021

Today's outline

- Deep neural networks
 - Computational graph (forward and backward propagation)
- Numerical stability in training
 - Gradient vanishing/exploding
- Generalization and regularization
 - Overfitting, underfitting
 - Weight decay and dropout

Part I: Neural Networks as a Computational Graph

Review: Neural networks with one hidden layer

- Input $\mathbf{x} \in \mathbb{R}^d$
- Hidden $\mathbf{W}^{(1)} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^m$
- Intermediate output $\mathbf{h} = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b})$

$\mathbf{h} \in \mathbb{R}^m$

Review: Neural networks with one hidden layer

Review: Neural network for *k***-way classification**

k outputs in the final layer

Review: Neural network for *k***-way classification**

• k outputs units in the final layer k-class classification (e.g., ImageNet has k=1000)

Review: Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

$p(y | \mathbf{x}) = \operatorname{softmax}(f)$ $= \frac{\exp f_y(x)}{\sum_{i}^{k} \exp f_i(x)}$

Review: Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Deep neural networks (DNNs)

$\mathbf{h}_1 = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$ $\mathbf{h}_2 = \sigma(\mathbf{W}^{(2)}\mathbf{h}_1 + \mathbf{b}^{(2)})$ $\mathbf{h}_3 = \sigma(\mathbf{W}^{(3)}\mathbf{h}_2 + \mathbf{b}^{(3)})$ $f = W^{(4)}h_3 + b^{(4)}$ y = softmax(f)

NNs are composition of nonlinear functions

Neural networks as variables + operations a = sigmoid(Wx + b)

- Decompose functions into atomic operations
- Separate data (variables) and computing (operations)
- Known as a computational graph

Neural networks as a computational graph

• A two-layer neural network

Neural networks as a computational graph

- A two-layer neural network
- Forward propagation vs. backward propagation

- A two-layer neural network
- Intermediate variables Z

- A two-layer neural network
- Intermediate variables Z

- A two-layer neural network
- Intermediate variables Z

- A two-layer neural network
- Intermediate variables Z

- A two-layer neural network
- Intermediate variables Z

- A two-layer neural network
- Assuming forward propagation is done
- Minimize a loss function L

- A two-layer neural network
- Assuming forward propagation is done
- Minimize a loss function L

- A two-layer neural network

- A two-layer neural network

Backward propagation: A modern treatment

- Define a neural network as a computational graph
- Must be a directed graph
- Nodes as variables and operations
- All operations must be differentiable
- Facilitate automatic differentiation
- erations erentiable

Part II: Numerical Stability

Gradients for Neural Networks

• Compute the gradient of the loss ℓ w.r.t. \mathbf{W}_{ℓ} $\frac{\partial \ell}{\partial \mathbf{W}^{t}} = \frac{\partial \ell}{\partial \mathbf{h}^{d}} \frac{\partial \mathbf{h}^{d}}{\partial \mathbf{h}^{d-1}} \dots \frac{\partial \mathbf{h}^{t+1}}{\partial \mathbf{h}^{t}} \frac{\partial \mathbf{h}^{t}}{\partial \mathbf{W}^{t}}$

Multiplication of *many* matrices

Wikipedia

Two Issues for Deep Neural Networks

Gradient Exploding

$1.5^{100} \approx 4 \times 10^{17}$

Gradient Vanishing

$0.8^{100} \approx 2 \times 10^{-10}$

Issues with Gradient Exploding

- Value out of range: infinity value (NaN)
- Sensitive to learning rate (LR)
 - Not small enough LR -> larger gradients
 - Too small LR -> No progress
 - May need to change LR dramatically during training

Gradient Vanishing

Use sigmoid as the activation function

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Issues with Gradient Vanishing

- Gradients with value 0
- No progress in training
 - No matter how to choose learning rate
- Severe with bottom layers
 - Only top layers are well trained
 - No benefit to make networks deeper

How to stabilize training?

Stabilize Training: Practical Considerations

- Goal: make sure gradient values are in a proper range
 - E.g. in [1e-6, 1e3]
- Multiplication -> plus
 - Architecture change (e.g., ResNet)
- Normalization
 - Batch Normalization, Gradient clipping
- Proper activation functions

Part III: Generalization & Regularization

How good are the models?

Training Error and Generalization Error

- Training error: prediction error on the training data
- Generalization/test error: prediction error on new data
- Example: practice for a future exam with past exams
 - needed)
 - However, doing well on past exams (training error) (generalization error)

Should practice and do well on past exams (training is

doesn't guarantee a good score on the future exam

Underfitting Overfitting

Image credit: hackernoon.com

Model Capacity

- The ability to fit variety of functions
- Low capacity models struggle to fit training set
 - Underfitting
- High capacity models can memorize the training set
 - Overfitting

inctions gle to fit

Underfitting and Overfitting

Low

High

Data complexity

Simple	Complex
Normal	Underfitting
Overfitting	Normal

Influence of Model Complexity

Model complexity

Estimate Neural Network Capacity

- It is hard to compare complexity
 between different algorithm families
 - e.g. kNN vs neural networks

Estimate Neural Network Capacity

- It is hard to compare complexity between different algorithm families
 - e.g. kNN vs neural networks
- Given an algorithm family, two main factors matter:
 - The number of parameters
 - The values taken by each parameter
- rs n parameter

d + 1

(d + 1)m + (m + 1)k

Data Complexity

- Multiple factors matters
 - # of data points
 - # of features in each data point
 - time/space structure
 - # of classes

How to regularize the model for better generalization?

Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

Squared Norm Regularization as Hard Constraint

- Reduce model complexity by limiting value range of weights
 - min $\ell(\mathbf{w}, b)$ subject to $\|\mathbf{w}\|^2 \leq \theta$
 - Often do not regularize bias *b*Doing or not doing has little difference in
 - Doing or not doing has I practice
 - A small θ means more regularization

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

min $\ell(\mathbf{w}, b)$

) +
$$\frac{\lambda}{2} \|\mathbf{w}\|^2$$

Squared Norm Regularization as Soft Constraint

We can rewrite the hard constraint version as

$$\min \ \mathcal{E}(\mathbf{w}, b) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

- $\lambda = 0$: no effect
- $\lambda \to \infty, \mathbf{w}^* \to \mathbf{0}$

• Hyper-parameter λ controls regularization importance

Illustrate the Effect on Optimal Solutions

 $\tilde{\mathbf{w}}^* = \arg\min \ \ell(\mathbf{w}, b)$

Dropout Hinton et al.

Apply Dropout

 Often apply dropout on the output of hidden fullyconnected layers

 $\mathbf{h} = \sigma(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$ $\mathbf{h}' = dropout(\mathbf{h})$ $\mathbf{o} = \mathbf{W}_2 \mathbf{h}' + \mathbf{b}_2$ $\mathbf{y} = \operatorname{softmax}(o)$

courses.d2l.ai/berkeley-stat-157

at training time.

Figure 2: Left: A unit at training time that is present with probability p and is connected to units in the next layer with weights w. **Right**: At test time, the unit is always present and the weights are multiplied by p. The output at test time is same as the expected output

Dropout Hinton et al.

Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

What we've learned today...

- Deep neural networks
 - Computational graph (forward and backward propagation)
- Numerical stability in training
 - Gradient vanishing/exploding
- Generalization and regularization
 - Overfitting, underfitting
 - Weight decay and dropout

Thanks!

Smola: <u>https://courses.d2l.ai/berkeley-stat-157/units/mlp.html</u>

Based on slides from Sharon Li, Xiaojin (Jerry) Zhu, Yingyu Liang, Yin Li (CS540@UW-Madison) and Alex

