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Today’s outline
• Deep neural networks


• Computational graph (forward and backward propagation)


• Numerical stability in training


• Gradient vanishing/exploding


• Generalization and regularization


• Overfitting, underfitting


• Weight decay and dropout



Part I: Neural Networks as a 
Computational Graph



Hidden layer 
Input 

m neurons
• Input 
• Hidden 
• Intermediate output   

x ∈ ℝd

W(1) ∈ ℝm×d, b ∈ ℝm

Review: Neural networks with one hidden layer

h = σ(W(1)x + b)

h ∈ ℝm
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Review: Neural networks with one hidden layer



m x n n x 1 m x 1
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m x 1m × d
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m × 1 m × 1

x ∈ ℝd

W b

Element-wise 

activation function

Key elements: linear operations + Nonlinear activations

Review: neural networks with one hidden layer



Review: Neural network for k-way classification

Hidden layer 
Input m=3 neurons
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• k outputs in the final layer
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Review: Neural network for k-way classification

Hidden layer 
Input m=3 neurons

x1

x2

• k outputs units in the final layer

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output 

w(2)
k1

w(2)
k2

w(2)
k3

fk =
m

∑
i=1

hiw(2)
ki + b′ k

…

k-class classification (e.g., ImageNet has k=1000)



Review: Softmax

Hidden layer 
Input m=3 neurons

x1

x2

Turns outputs f into probabilities (sum up to 1 across k classes)

x ∈ ℝd

Output 

fk

…
f1

p(y |x) = softmax( f )

=
exp fy(x)

∑k
i exp fi(x)



Review: Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Normalized



Deep neural networks (DNNs)
f1 f2 h1 = σ(W(1)x + b(1))

h2 = σ(W(2)h1 + b(2))
h3 = σ(W(3)h2 + b(3))

f = W(4)h3 + b(4)

y = softmax(f)

NNs are composition 
of nonlinear 

functions



Neural networks as variables + operations
a = sigmoid(Wx + b)

• Decompose functions into atomic operations

• Separate data (variables) and computing (operations)
• Known as a computational graph



Neural networks as a computational graph

• A two-layer neural network



Neural networks as a computational graph

• A two-layer neural network
• Forward propagation vs. backward propagation



Neural networks: forward propagation

• A two-layer neural network
• Intermediate variables Z

z1



• A two-layer neural network

z1 z2

Neural networks: forward propagation

• Intermediate variables Z



• A two-layer neural network

z1 z2 z3

Neural networks: forward propagation

• Intermediate variables Z



• A two-layer neural network

z1 z2 z3 z4

Neural networks: forward propagation

• Intermediate variables Z



• A two-layer neural network

z1 z2 z3 z4 z5

Neural networks: forward propagation

• Intermediate variables Z



• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L
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• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation



• Define a neural network as a computational graph
• Must be a directed graph

Backward propagation: A modern treatment

• Nodes as variables and operations
• All operations must be differentiable

• Facilitate automatic differentiation



Part II: Numerical Stability



Gradients for Neural Networks

• Compute the gradient of the loss    w.r.t. 

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of many matrices

{
Wikipedia



Two Issues for Deep Neural Networks d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10



Issues with Gradient Exploding

• Value out of range: infinity value (NaN) 
• Sensitive to learning rate (LR) 

• Not small enough LR -> larger gradients 
• Too small LR -> No progress  
• May need to change LR dramatically during training



Gradient Vanishing 

• Use sigmoid as the activation function  

σ(x) =
1

1 + e−x σ′ (x) = σ(x)(1 − σ(x))

Small 
gradients

Small 
gradients



Issues with Gradient Vanishing

• Gradients with value 0 
• No progress in training 

• No matter how to choose learning rate 
• Severe with bottom layers 

• Only top layers are well trained 
• No benefit to make networks deeper



How to 
stabilize 
training?



Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range 
• E.g. in [1e-6, 1e3] 

•  Multiplication -> plus 
• Architecture change (e.g., ResNet) 

• Normalization 
• Batch Normalization, Gradient clipping  

• Proper activation functions 



Part III: Generalization & Regularization



How good are 
the models?



Training Error and Generalization Error

• Training error: prediction error on the training data 
• Generalization/test error: prediction error on new data 
• Example: practice for a future exam with past exams 

• Should practice and do well on past exams (training is 
needed) 

• However, doing well on past exams (training error) 
doesn’t guarantee a good score on the future exam 
(generalization error)



Underfitting  
Overfitting 

Image credit: hackernoon.com



Model Capacity 

• The ability to fit variety of functions 
• Low capacity models struggle to fit 

training set 
• Underfitting 

• High capacity models can 
memorize the training set 
• Overfitting



Underfitting and Overfitting

Model 
capacity

Data complexity

v
Simple Complex

Low Normal Underfitting

High Overfitting Normal



Influence of Model Complexity

Also known as “Test 
error”



Estimate Neural Network Capacity 

• It is hard to compare complexity 
between different algorithm families 
• e.g. kNN vs neural networks



Estimate Neural Network Capacity 

• It is hard to compare complexity 
between different algorithm families 
• e.g. kNN vs neural networks 

• Given an algorithm family, two main 
factors matter: 
• The number of parameters  
• The values taken by each parameter

d + 1

(d + 1)m + (m + 1)k



Data Complexity

• Multiple factors matters 
• # of data points 
• # of features in each data point 
• time/space structure 
• # of classes 



How to regularize the model for 
better generalization?



Weight 
Decay



Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value 
range of weights 

• Often do not regularize bias b  
• Doing or not doing has little difference in 

practice 
• A small     means more regularization

min ℓ(w, b) subject to ∥w∥2 ≤ θ

θ



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

min ℓ(w, b) +
λ
2

∥w∥2



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as 

• Hyper-parameter    controls regularization importance 
•          :   no effect 
•

min ℓ(w, b) +
λ
2

∥w∥2

λ = 0
λ → ∞, w* → 0

λ



Illustrate the Effect on Optimal Solutions

w̃*w*

w* = arg min ℓ(w, b) +
λ
2

∥w∥2

w̃* = arg min ℓ(w, b)



Dropout
Hinton et al.



courses.d2l.ai/berkeley-stat-157

Apply Dropout

• Often apply dropout on the output of hidden fully-
connected layers

h = σ(W1x + b1)
h′ = dropout(h)
o = W2h′ + b2

y = softmax(o)



Dropout



Dropout
Hinton et al.



What we’ve learned today…
• Deep neural networks


• Computational graph (forward and backward propagation)


• Numerical stability in training


• Gradient vanishing/exploding


• Generalization and regularization


• Overfitting, underfitting


• Weight decay and dropout



Thanks!
Based on slides from Sharon Li, Xiaojin (Jerry) Zhu, Yingyu Liang, Yin Li (CS540@UW-Madison) and Alex 
Smola: https://courses.d2l.ai/berkeley-stat-157/units/mlp.html

https://courses.d2l.ai/berkeley-stat-157/units/mlp.html

