
CS 540 Introduction to Artificial Intelligence
Neural Networks (III)

Yudong Chen
University of Wisconsin-Madison

Oct 26, 2021

Slides created by Sharon Li [modified by Yudong Chen]

Today’s outline
• Deep neural networks

• Computational graph (forward and backward propagation)

• Numerical stability in training

• Gradient vanishing/exploding

• Generalization and regularization

• Overfitting, underfitting

• Weight decay and dropout

Part I: Neural Networks as a
Computational Graph

Hidden layer
Input

m neurons
• Input
• Hidden
• Intermediate output

x ∈ ℝd

W(1) ∈ ℝm×d, b ∈ ℝm

Review: Neural networks with one hidden layer

h = σ(W(1)x + b)

h ∈ ℝm

m x n n x 1 m x 1

=+

m x 1m × d
d × 1

m × 1 m × 1

x ∈ ℝd

W b

Review: Neural networks with one hidden layer

m x n n x 1 m x 1

=+

m x 1m × d
d × 1

m × 1 m × 1

x ∈ ℝd

W b

Element-wise

activation function

Key elements: linear operations + Nonlinear activations

Review: neural networks with one hidden layer

Review: Neural network for k-way classification

Hidden layer
Input m=3 neurons

x1

x2

• k outputs in the final layer

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output
w(2)

11

w(2)
12

w(2)
13

f1 =
m

∑
i=1

hiw(2)
1i + b′ 1

Review: Neural network for k-way classification

Hidden layer
Input m=3 neurons

x1

x2

• k outputs units in the final layer

x ∈ ℝd

h3 = σ(
d

∑
i=1

xiw(1)
3i + b3)

h2 = σ(
d

∑
i=1

xiw(1)
2i + b2)

h1 = σ(
d

∑
i=1

xiw(1)
1i + b1)

Output

w(2)
k1

w(2)
k2

w(2)
k3

fk =
m

∑
i=1

hiw(2)
ki + b′ k

…

k-class classification (e.g., ImageNet has k=1000)

Review: Softmax

Hidden layer
Input m=3 neurons

x1

x2

Turns outputs f into probabilities (sum up to 1 across k classes)

x ∈ ℝd

Output

fk

…
f1

p(y |x) = softmax(f)

=
exp fy(x)

∑k
i exp fi(x)

Review: Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Normalized

Deep neural networks (DNNs)
f1 f2 h1 = σ(W(1)x + b(1))

h2 = σ(W(2)h1 + b(2))
h3 = σ(W(3)h2 + b(3))

f = W(4)h3 + b(4)

y = softmax(f)

NNs are composition
of nonlinear

functions

Neural networks as variables + operations
a = sigmoid(Wx + b)

• Decompose functions into atomic operations

• Separate data (variables) and computing (operations)
• Known as a computational graph

Neural networks as a computational graph

• A two-layer neural network

Neural networks as a computational graph

• A two-layer neural network
• Forward propagation vs. backward propagation

Neural networks: forward propagation

• A two-layer neural network
• Intermediate variables Z

z1

• A two-layer neural network

z1 z2

Neural networks: forward propagation

• Intermediate variables Z

• A two-layer neural network

z1 z2 z3

Neural networks: forward propagation

• Intermediate variables Z

• A two-layer neural network

z1 z2 z3 z4

Neural networks: forward propagation

• Intermediate variables Z

• A two-layer neural network

z1 z2 z3 z4 z5

Neural networks: forward propagation

• Intermediate variables Z

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

z1 z2 z3 z4 z5

Neural networks: backward propagation

• Define a neural network as a computational graph
• Must be a directed graph

Backward propagation: A modern treatment

• Nodes as variables and operations
• All operations must be differentiable

• Facilitate automatic differentiation

Part II: Numerical Stability

Gradients for Neural Networks

• Compute the gradient of the loss w.r.t.

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of many matrices

{
Wikipedia

Two Issues for Deep Neural Networks d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10

Issues with Gradient Exploding

• Value out of range: infinity value (NaN)
• Sensitive to learning rate (LR)

• Not small enough LR -> larger gradients
• Too small LR -> No progress
• May need to change LR dramatically during training

Gradient Vanishing

• Use sigmoid as the activation function

σ(x) =
1

1 + e−x σ′ (x) = σ(x)(1 − σ(x))

Small
gradients

Small
gradients

Issues with Gradient Vanishing

• Gradients with value 0
• No progress in training

• No matter how to choose learning rate
• Severe with bottom layers

• Only top layers are well trained
• No benefit to make networks deeper

How to
stabilize
training?

Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range
• E.g. in [1e-6, 1e3]

• Multiplication -> plus
• Architecture change (e.g., ResNet)

• Normalization
• Batch Normalization, Gradient clipping

• Proper activation functions

Part III: Generalization & Regularization

How good are
the models?

Training Error and Generalization Error

• Training error: prediction error on the training data
• Generalization/test error: prediction error on new data
• Example: practice for a future exam with past exams

• Should practice and do well on past exams (training is
needed)

• However, doing well on past exams (training error)
doesn’t guarantee a good score on the future exam
(generalization error)

Underfitting
Overfitting

Image credit: hackernoon.com

Model Capacity

• The ability to fit variety of functions
• Low capacity models struggle to fit

training set
• Underfitting

• High capacity models can
memorize the training set
• Overfitting

Underfitting and Overfitting

Model
capacity

Data complexity

v
Simple Complex

Low Normal Underfitting

High Overfitting Normal

Influence of Model Complexity

Also known as “Test
error”

Estimate Neural Network Capacity

• It is hard to compare complexity
between different algorithm families
• e.g. kNN vs neural networks

Estimate Neural Network Capacity

• It is hard to compare complexity
between different algorithm families
• e.g. kNN vs neural networks

• Given an algorithm family, two main
factors matter:
• The number of parameters
• The values taken by each parameter

d + 1

(d + 1)m + (m + 1)k

Data Complexity

• Multiple factors matters
• # of data points
• # of features in each data point
• time/space structure
• # of classes

How to regularize the model for
better generalization?

Weight
Decay

Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value
range of weights

• Often do not regularize bias b
• Doing or not doing has little difference in

practice
• A small means more regularization

min ℓ(w, b) subject to ∥w∥2 ≤ θ

θ

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

min ℓ(w, b) +
λ
2

∥w∥2

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

• Hyper-parameter controls regularization importance
• : no effect
•

min ℓ(w, b) +
λ
2

∥w∥2

λ = 0
λ → ∞, w* → 0

λ

Illustrate the Effect on Optimal Solutions

w̃*w*

w* = arg min ℓ(w, b) +
λ
2

∥w∥2

w̃* = arg min ℓ(w, b)

Dropout
Hinton et al.

courses.d2l.ai/berkeley-stat-157

Apply Dropout

• Often apply dropout on the output of hidden fully-
connected layers

h = σ(W1x + b1)
h′ = dropout(h)
o = W2h′ + b2

y = softmax(o)

Dropout

Dropout
Hinton et al.

What we’ve learned today…
• Deep neural networks

• Computational graph (forward and backward propagation)

• Numerical stability in training

• Gradient vanishing/exploding

• Generalization and regularization

• Overfitting, underfitting

• Weight decay and dropout

Thanks!
Based on slides from Sharon Li, Xiaojin (Jerry) Zhu, Yingyu Liang, Yin Li (CS540@UW-Madison) and Alex
Smola: https://courses.d2l.ai/berkeley-stat-157/units/mlp.html

https://courses.d2l.ai/berkeley-stat-157/units/mlp.html

