# CS540 Introduction to Artificial Intelligence Convolutional Neural Networks (I) <br> Yudong Chen <br> University of Wisconsin-Madison 

November 2, 2021

Slides created by Sharon Li [modified by Yudong Chen]

Congrats on getting midterm done!

Reminder: HW6 is due this Thursday

## Outline

- Intro of convolutional computations
- 2D convolution
- Padding, stride etc
- Multiple input and output channels
- Pooling
- Basic Convolutional Neural Networks
- LeNet


## Review: Deep neural networks (DNNs)



$$
\begin{aligned}
\mathbf{h}^{(1)} & =\sigma\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}_{1}\right) \\
\mathbf{h}^{(2)} & =\sigma\left(\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}_{2}\right) \\
\mathbf{h}^{(3)} & =\sigma\left(\mathbf{W}^{(3)} \mathbf{h}^{(2)}+\mathbf{b}_{3}\right) \\
\mathbf{f} & =\mathbf{W}^{(4)} \mathbf{h}^{(3)}+\mathbf{b}_{4} \\
\mathbf{y} & =\operatorname{softmax}(\mathbf{f})
\end{aligned}
$$

NNs are composition of nonlinear functions

## How to classify

Cats vs. dogs?


36M numbers in a RGB image!

## Fully Connected Networks


$\sim 36 \mathrm{M}$ elements $\times 100=\sim 3.6 \mathrm{~B}$ parameters!

## Convolutions come to rescue!

## Why Convolution?

## Translation Invariance



Locality


## 2-D Convolution

| Input |  | Kernel |  | Output |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 0 1 2 <br> 3 4 5 <br> 6 7 8$\star$0 1 <br> 2 3$=$19 25 <br> 37 43 |  |  |  |  |  |

$$
\begin{aligned}
& 0 \times 0+1 \times 1+3 \times 2+4 \times 3=19 \\
& 1 \times 0+2 \times 1+4 \times 2+5 \times 3=25 \\
& 3 \times 0+4 \times 1+6 \times 2+7 \times 3=37 \\
& 4 \times 0+5 \times 1+7 \times 2+8 \times 3=43
\end{aligned}
$$



## 2-D Convolution Layer

| 0 | 1 | 2 |
| :--- | :--- | :--- |
| 3 | 4 | 5 |
| 6 | 7 | 8 |$\star$| 0 | 1 |
| :--- | :--- |
| 2 | 3 |$=$| 19 | 25 |
| :--- | :--- |
| 37 | 43 |

- X: $n_{h} \times n_{w}$ input matrix
- $\mathbf{W}: k_{h} \times k_{w}$ kernel matrix
- $b$ : scalar bias
- Y: $\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)$ output matrix

$$
\mathbf{Y}=\mathbf{X} \star \mathbf{W}+b
$$

- W and $b$ are learnable parameters


## Examples

$$
\left[\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right]
$$



Edge Detection


$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{array}\right]
$$



Sharpen
(wikipedia)

$$
\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$



## Convolutional Neural Networks

-Strong empirical application performance
-Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

## FCNet vs ConvNet: dense vs sparse interaction

Fully connected layer, $m \times n$ edges

m output nodes
$n$ input nodes

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

## FCNet vs ConvNet: dense vs sparse interaction

Convolutional layer, $\leq m \times k$ edges


## Efficiency of Convolution

- Input size: $320 \times 280$
- Kernel Size: $2 \times 1$
- Output size: $319 \times 280$




## Padding

- Given a $32 \times 32$ input image
- Apply convolution with $5 \times 5$ kernel
- $28 \times 28$ output with 1 layer
- $24 \times 24$ output with 2 layers
- $4 \times 4$ output with 7 layers
- Shape decreases faster with larger kernels
- Shape reduces from $n_{h} \times n_{w}$ to


■

$\square$

$$
\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)
$$

## Padding

## Padding adds rows/columns around input

Input

| 0 | 0 | $0: 0$ |  | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 0 : |
| --- |  |  |  | - |
| 0 | 3 | 4 | 5 | 0 |
| 0 | 6 | 7 | 8 | 0 |
| 0 | 0 | 0 |  | $0:$ |

Output

| 0 | 1 |
| :--- | :--- |
| 2 | 3 |


| 0 | 3 | 8 | 4 |
| :---: | :---: | :---: | :---: |
| 9 | 19 | 25 | 10 |
| 21 | 37 | 43 | 16 |
| 6 | 7 | 8 | 0 |

## Padding

- Padding $p_{h}$ rows and $p_{w}$ columns, output shape will be

$$
\left(n_{h}-k_{h}+p_{h}+1\right) \times\left(n_{w}-k_{w}+p_{w}+1\right)
$$

- A common choice is $p_{h}=k_{h}-1$ and $p_{w}=k_{w}-1$
- Odd $k_{h}$ : pad $p_{h} / 2$ on both sides
- Even $k_{h}$ : pad $\left\lceil p_{h} / 2\right\rceil$ on top, $\left\lfloor p_{h} / 2\right\rfloor$ on bottom


## Stride

- Convolution: slide over 1 row/column each time
- Stride: slide over multiple rows/columns each time

Strides of 3 and 2 for height and width

Input

| 0 | 0 | 0 0 |  | 0 |
| :---: | :---: | :---: | :---: | :---: |
| -- |  |  |  | - |
| 0 | 0 | 1 | 2 | 0 |
| $: 0$ | 3 | 4 | 5 | 0 |
| 0 | 6 | 7 | 8 | 0 |
|  |  |  |  |  |
| 0 | 0 | 0 | 0 | 0 |

$$
\begin{aligned}
& 0 \times 0+0 \times 1+1 \times 2+2 \times 3=8 \\
& 0 \times 0+6 \times 1+0 \times 2+0 \times 3=6
\end{aligned}
$$



## Stride

- Given stride $s_{h}$ for the height and stride $s_{w}$ for the width, the output shape is

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

- With $p_{h}=k_{h}-1$ and $p_{w}=k_{w}-1$

$$
\left\lfloor\left(n_{h}+s_{h}-1\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}+s_{w}-1\right) / s_{w}\right\rfloor
$$

- If input height/width are divisible by strides

$$
\left(n_{h} / s_{h}\right) \times\left(n_{w} / s_{w}\right)
$$

Q1. Suppose we want to perform convolution on a single channel image of size $7 \times 7$ (no padding) with a kernel of size $3 \times 3$, and stride $=2$. What is the dimension of the output?

7
A. $3 \times 3$
B. $7 x 7$
C. $5 \times 5$
D. $2 \times 2$


## Multiple Input and Output Channels

## Multiple Input Channels

- Color image may have three RGB channels
- Converting to grayscale loses information



## Multiple Input Channels

- Color image may have three RGB channels
- Converting to grayscale loses information


## Multiple Input Channels

- Have a kernel for each channel, and then sum results over channels

Input
Kernel
Input
Kernel
Output

$$
(1 \times 1+2 \times 2+4 \times 3+5 \times 4)
$$

$$
+(0 \times 0+1 \times 1+3 \times 2+4 \times 3)
$$



$*$| 0 1 |  |
| :--- | :--- |
| 2 | 3 |$=$



$$
\begin{aligned}
& +(0 x \\
& =56
\end{aligned}
$$

## Multiple Input Channels

- X : $c_{i} \times n_{h} \times n_{w}$ input
- W: $c_{i} \times k_{h} \times k_{w}$ kernel
- Y: $m_{h} \times m_{w}$ output

$$
\mathbf{Y}=\sum_{j=0}^{c_{i}} \mathbf{X}_{j,,:,} \star \mathbf{W}_{j,:,:}
$$

## Multiple Output Channels

- No matter how many inputs channels, so far we always get a single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input $\mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernel W: $c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output Y: $c_{o} \times m_{h} \times m_{w}$

$$
\mathbf{Y}_{\ell,,:,}=\mathbf{X} \star \mathbf{W}_{\ell,,,,:,}
$$

$$
\text { for } \ell=1, \ldots, c_{o}
$$

## Multiple Input/Output Channels

- Each 3-D kernel may recognize a particular pattern

(Gabor filters)

Q3-1. Suppose we want to perform convolution on a RGB image of size $224 \times 224$ (no padding) with 643 -D kernels of size $3 \times 3$. Stride $=1$. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?
A. $64 \times 3 \times 3 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 222 \times 222$
D. $64 \times 3 \times 3 \times 3 \times 222 \times 222$

Q 3-2. Suppose we want to perform convolution on a RGB image of size $224 \times 224$ (no padding) with 64 3-D kernels of size $3 \times 3$. Stride $=1$. Which is a reasonable estimate of the total number of learnable parameters?
A. $64 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 3 \times 64$
D. $(3 \times 3 \times 3+1) \times 64$


## Pooling



## Pooling



## 2-D Max Pooling

- Returns the maximal value in the sliding window

Input
Output

| 0 | 1 | 2 |
| :--- | :--- | :--- |
| 3 | 4 | 5 |
| 6 | 7 | 8 |


| 4 | 5 |
| :--- | :--- |
| 7 | 8 |

$$
\max (0,1,3,4)=4
$$

## Padding, Stride, and Multiple Channels for Pooling

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

\#output channels = \#input channels


## Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling - The average signal strength in a window

Max pooling


Average pooling


Q2-1. Suppose we want to perform $2 \times 2$ average pooling on the following single channel feature map of size $4 \times 4$ (no padding), and stride $=2$. What is the output?

A. $\quad$| 20 | 30 |
| :--- | :--- |
| 70 | 90 |

B. | 16 | 8 |
| :--- | :--- |
| 20 | 25 |

| 12 | 20 | 30 | 0 |
| :--- | :--- | :--- | :--- |
| 20 | 12 | 2 | 0 |
| 0 | 70 | 5 | 2 |
| 8 | 2 | 90 | 3 |

C. | 20 | 30 |
| :--- | :--- |
| 20 | 25 |

D.

| 12 | 2 |
| :--- | :--- |
| 70 | 5 |

Q2-2. What is the output if we use $2 \times 2$ max pooling (other settings are the same)?

A. $\quad$| 20 | 30 |
| :--- | :--- |
| 70 | 90 |

B. | 16 | 8 |
| :--- | :--- |
| 20 | 25 |

| 12 | 20 | 30 | 0 |
| :--- | :--- | :--- | :--- |
| 20 | 12 | 2 | 0 |
| 0 | 70 | 5 | 2 |
| 8 | 2 | 90 | 3 |

C. | 20 | 30 |
| :--- | :--- |
| 20 | 25 |

D.

| 12 | 2 |
| :--- | :--- |
| 70 | 5 |

## Convolutional Neural Networks

## Evolution of neural net architectures



## LeNet Architecture



Philip Marlowe portuanp gre 970 6381 Hollywood Bled * 615 los Angels, $C A$ 合

$$
\begin{aligned}
& \text { Dave Fennuid } \\
& \text { better, in e } \\
& 509 \text { Cascade Are, Suite H } \\
& \text { Hood Ricer, OR } 97031
\end{aligned}
$$

## Handwritten Digit Recognition

## MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- $28 \times 28$ images
- 10 classes


# 000000000000 111111111111 

22222222222
33333333 333
444444444444
555555555555
666666666666
777777777777
888888888888
999999999999


ATET LeNet 5 RESEARCH $^{\text {LIN }}$ answer: 0


## LeNet Architecture



## LeNet in Pytorch

```
def ___init__(self):
    super(LeNet5, self).__init__()
    # Convolution (In LeNet-5, 32\times32 images are given as input. Hence padding of 2 is done below)
    self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
    # Max-pooling
    self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
    # Convolution
    self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)
    # Max-pooling
    self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
    # Fully connected layer
    self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (co
    self.fc2 = torch.nn.Linear(120, 84) # convert matrix with 120 features to a matrix of 84 features (columns)
    self.fc3 = torch.nn.Linear(84, 10) # convert matrix with 84 features to a matrix of 10 features (columns)
```


## Summary

- Intro of convolutional computations
- 2D convolution
- Padding, stride etc
- Multiple input and output channels
- Pooling
- Basic Convolutional Neural Networks
- LeNet (first conv nets)



## Acknowledgement

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li: https://courses.d21.ai/berkeley-stat-157/index.html

