

CS540 Introduction to Artificial Intelligence Convolutional Neural Networks (I)

Yudong Chen
University of Wisconsin-Madison

November 2, 2021

Slides created by Sharon Li [modified by Yudong Chen]

Congrats on getting midterm done!

Reminder: HW6 is due this Thursday

Outline

- Intro of convolutional computations
 - 2D convolution
 - Padding, stride etc
 - Multiple input and output channels
 - Pooling
 - Basic Convolutional Neural Networks
 - LeNet

Review: Deep neural networks (DNNs)

$$\mathbf{h}^{(1)} = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}_1)$$

$$\mathbf{h}^{(2)} = \sigma(\mathbf{W}^{(2)}\mathbf{h}^{(1)} + \mathbf{b}_2)$$

$$\mathbf{h}^{(3)} = \sigma(\mathbf{W}^{(3)}\mathbf{h}^{(2)} + \mathbf{b}_3)$$

$$\mathbf{f} = \mathbf{W}^{(4)}\mathbf{h}^{(3)} + \mathbf{b}_4$$

$$\mathbf{y} = \text{softmax}(\mathbf{f})$$

NNs are composition of nonlinear functions

How to classify Cats vs. dogs?

12MP

wide-angle and telephoto cameras

36M numbers in a RGB image!

Fully Connected Networks

Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Convolutions come to rescue!

Why Convolution?

Translation Invariance

Locality

2-D Convolution

Input

0	1	2
3	4	5
6	7	8

Kernel

Output

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,$$

 $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,$
 $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,$
 $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

(vdumoulin@ Github)

2-D Convolution Layer

0	1	2		Λ	1	19	25
3	4	5	*	<u> </u>	ر ا		<u>7</u> 3
6	7	8		2	3	37	43

- $\mathbf{X}: n_h \times n_w$ input matrix
- $\mathbf{W}: k_h \times k_w$ kernel matrix
- b: scalar bias
- $\mathbf{Y}: (n_h k_h + 1) \times (n_w k_w + 1)$ output matrix

$$Y = X \star W + b$$

• W and b are learnable parameters

Examples

$$egin{bmatrix} -1 & -1 & -1 \ -1 & 8 & -1 \ -1 & -1 & -1 \end{bmatrix}$$

Edge Detection

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Sharpen

Gaussian Blur

Convolutional Neural Networks

- ·Strong empirical application performance
- Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

FCNet vs ConvNet: dense vs sparse interaction

Fully connected layer, $m \times n$ edges

FCNet vs ConvNet: dense vs sparse interaction

Convolutional layer, $\leq m \times k$ edges

Efficiency of Convolution

• Input size: 320 x 280

Kernel Size: 2 x 1

• Output size: 319 x 280

Padding

- Given a 32 x 32 input image
- Apply convolution with 5 x 5 kernel
 - 28 x 28 output with 1 layer
 - 24 x 24 output with 2 layers
 - 4 x 4 output with 7 layers
- Shape decreases faster with larger kernels
 - Shape reduces from $n_h \times n_w$ to

$$(n_h - k_h + 1) \times (n_w - k_w + 1)$$

Padding

Padding adds rows/columns around input

Padding

• Padding p_h rows and p_w columns, output shape will be

$$(n_h - k_h + p_h + 1) \times (n_w - k_w + p_w + 1)$$

- A common choice is $p_h = k_h 1$ and $p_w = k_w 1$
 - Odd k_h : pad $p_h/2$ on both sides
 - Even k_h : pad $\lceil p_h/2 \rceil$ on top, $\lfloor p_h/2 \rfloor$ on bottom

Stride

- Convolution: slide over 1 row/column each time
- Stride: slide over multiple rows/columns each time

Strides of 3 and 2 for height and width

Stride

• Given stride s_h for the height and stride s_w for the width, the output shape is

$$[(n_h - k_h + p_h + s_h)/s_h] \times [(n_w - k_w + p_w + s_w)/s_w]$$

• With $p_h = k_h - 1$ and $p_w = k_w - 1$

$$\lfloor (n_h + s_h - 1)/s_h \rfloor \times \lfloor (n_w + s_w - 1)/s_w \rfloor$$

If input height/width are divisible by strides

$$(n_h/s_h) \times (n_w/s_w)$$

Q1. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3

B.7x7

C.5x5

D.2x2

- Color image may have three RGB channels
- Converting to grayscale loses information

- Color image may have three RGB channels
- Converting to grayscale loses information

 Have a kernel for each channel, and then sum results over channels

$$(1 \times 1 + 2 \times 2 + 4 \times 3 + 5 \times 4)$$

+ $(0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3)$
= 56

- $\mathbf{X}: c_i \times n_h \times n_w$ input
- W: $c_i \times k_h \times k_w$ kernel
- $\mathbf{Y}: m_h \times m_w$ output

$$\mathbf{Y} = \sum_{j=0}^{c_i} \mathbf{X}_{j,:,:} \star \mathbf{W}_{j,:,:}$$

Multiple Output Channels

- No matter how many inputs channels, so far we always get a single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input $\mathbf{X}: c_i \times n_h \times n_w$
- Kernel W: $c_o \times c_i \times k_h \times k_w$
- Output $\mathbf{Y}: c_o \times m_h \times m_w$

$$\mathbf{Y}_{\ell,:,:} = \mathbf{X} \star \mathbf{W}_{\ell,:,:,:}$$

for
$$\ell = 1, ..., c_o$$

Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern

(Gabor filters)

Q3-1. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 3-D kernels of size 3x3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

- A. 64x3x3x222x222
- B. 64x3x3x222
- C. 3x3x222x222
- D. 64x3x3x3x222x222

Q 3-2. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 3-D kernels of size 3x3. Stride = 1. Which is a reasonable estimate of the total number of learnable parameters?

- A. 64x222x222
- B. 64x3x3x222
- C. 3x3x3x64
- D. (3x3x3+1)x64

Pooling

Pooling

Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

2-D Max Pooling

Returns the maximal value in the sliding window

Padding, Stride, and Multiple Channels for Pooling

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

#output channels = #input channels

Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
 - The average signal strength in a window

Max pooling

Average pooling

Q2-1. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?

20	30
70	90

16	8
20	25

) .	20	30
	20	25

12	2
70	5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q2-2. What is the output if we use 2 x 2 max pooling (other settings are the same)?

20	30
70	90

16	8
20	25

) .	20	30
	20	25

12	2
70	5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Convolutional Neural Networks

Evolution of neural net architectures

LeNet Architecture

Handwritten Digit Recognition

DELLITE CHECK PRINTERS - 1H

"0000500000"

MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28 x 28 images
- 10 classes

Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

LeNet Architecture

LeNet in Pytorch

```
def __init__(self):
    super(LeNet5, self).__init__()
    # Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)
    self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
    # Max-pooling
    self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
    # Convolution
    self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)
    # Max-pooling
    self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
    # Fully connected layer
    self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (col
    self.fc2 = torch.nn.Linear(120, 84)
                                             # convert matrix with 120 features to a matrix of 84 features (columns)
    self.fc3 = torch.nn.Linear(84, 10)
                                             # convert matrix with 84 features to a matrix of 10 features (columns)
```

Summary

- Intro of convolutional computations
 - 2D convolution
 - Padding, stride etc
 - Multiple input and output channels
 - Pooling
 - Basic Convolutional Neural Networks
 - LeNet (first conv nets)

Acknowledgement:

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li: https://courses.d2l.ai/berkeley-stat-157/index.html