

CS 540 Introduction to Artificial Intelligence Deep Learning III

Yudong Chen University of Wisconsin-Madison

November 9, 2021

Announcements

- **HW7**: Due next Tuesday
- Midterm: grading completed
- Class roadmap:
 - Today:
 - A bit more on Deep Learning
 - Summary of neural networks
 - Next:
 - SearchGamesArtificial Intelligence

Outline

- CNNs with more layers: ResNets
 - Layer problems, residual connections, identity maps
- Data Augmentation & Regularization
 - Expanding the dataset, avoiding overfitting

Last Time: CNNs

Convolutional Neural Networks:

- Components: convolutional layers, pooling layers (recall kernels, channels, strides, padding)
- Architectures: LeNet, AlexNet, VGG

Trend: bigger, deeper.

Credit: Mathworks

Evolution of CNNs

ImageNet competition (error rate)

Credit: Stanford CS 231n

Simple Idea: Add More Layers

AlexNet 8 layers, VGG: 19 layers. Add more layers... sufficient?

- No! Some problems:
 - i) Vanishing gradients: more layers → more likely
 - ii) Instability: can't even guarantee we learn identity map f(x) = x

Reflected in training error:

He et al: "Deep Residual Learning for Image Recognition"

ResNet Architecture

Idea: Residual (skip) connections help make learning easier

- Right: Example architecture
- Note: residual connections
 - Every two layers for ResNet34
- Vastly better performance
 - No additional parameters!
 - Records on many benchmarks

More on ResNets

Idea: Residual (skip) connections help make learning easier

- Alleviate vanishing gradient issue
- More paths in computation graph: better information flow

Data Concerns

What if we don't have a lot of data?

- We risk overfitting
- Avoiding overfitting: regularization methods
- Another way: Data Augmentation

Data Augmentation

Augmentation: transform + add new samples to dataset

- Transformations: based on domain
- Idea: build invariances into the model
 - Ex: if all images have same alignment, model learns to use it
- Keep the label the same!

Transformations

Examples of transformations for images

- Crop (and zoom)
- Color (change contrast/brightness)
- Rotations+ (translate, stretch, shear, etc)

Many more possibilities. Combine as well!

Q: how to deal with this at **test time**?

A: transform, test, average

Importance of Augmentation

Data augmentation is critical for top performance!

- You should use it!
- AlexNet: used (many papers re-used as well)
 - Random crops, rotations, flips. 2048x expansion!
 - Color augmentation via PCA. 1% error rate reduction

Krizhevsky et al: "ImageNet Classification with Deep Convolutional Neural Networks"

Summary

- Intro to deeper networks (ResNets)
 - Dealing with problems by adding skip connections
- Data augmentation

Acknowledgements: Inspired by materials by Fei-Fei Li,

Ranjay Krishna, Danfei Xu (Stanford CS231n)