
CS540 Introduction to Artificial Intelligence
(Deep) Neural Networks Summary

Yudong Chen
University of Wisconsin-Madison

November 9, 2021

Slides created by Sharon Li [modified by Yudong Chen]

User Sharon

Tempo

Intensity

Relaxed Fast

DisLike
Like

Predict whether a user likes a song or not

y = 1

y = 0

Inspiration from neuroscience
- Inspirations from human brains

- Networks of simple and homogenous units (a.k.a neuron)

(wikipedia)

How to classify
Cats vs. dogs?

Single-layer
Perceptron

Multi-layer
Perceptron

Training of neural
networks

Convolutional
neural networks

Perceptron
• Given input , weight and bias , perceptron outputs:

o = σ (w⊤x + b) σ(x) = {1 if x > 0
0 otherwise

x w b

Input

Cats vs. dogs?

Activation function

Output (0 or 1)

w1
w2

wd

x1

x2

xd

Perceptron
• Goal: learn parameters and b to

minimize the classification error
w = {w1, w2, . . . , wd}

Cats vs. dogs?

Input Output (0 or 1)

w1
w2

wd

x1

x2

xd

Learning logic functions using perceptron

The perceptron can learn an AND function

0 1

1

x1 = 1,x2 = 1,y = 1
x1 = 1,x2 = 0,y = 0
x1 = 0,x2 = 1,y = 0
x1 = 0,x2 = 0,y = 0

x1

x2

The perceptron can learn an AND function

0 1

1

Output

w2

w1
σ(x1w1 + x2w2 + b)

σ(x) = {1 if x > 0
0 otherwise

w1 = 1,w2 = 1,b = − 1.5
x1

x2

Learning logic functions using perceptron

Learning OR function using perceptron
The perceptron can learn an OR function

0 1

1

Output

w2

w1
σ(x1w1 + x2w2 + b)

σ(x) = {1 if x > 0
0 otherwise

w1 = 1,w2 = 1,b = − 0.5
x1

x2

XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function
(neurons can only generate linear separators)

This contributed to the first AI winter

x1 = 1,x2 = 1,y = 0
x1 = 1,x2 = 0,y = 1
x1 = 0,x2 = 1,y = 1
x1 = 0,x2 = 0,y = 0

Quiz break
Which one of the following is NOT true about perceptron?

A. Perceptron only works if the data is linearly separable.

B. Perceptron can learn AND function

C. Perceptron can learn XOR function

D. Perceptron is a supervised learning algorithm

Quiz break
Which one of the following is NOT true about perceptron?

A. Perceptron only works if the data is linearly separable.

B. Perceptron can learn AND function

C. Perceptron can learn XOR function

D. Perceptron is a supervised learning algorithm

Multilayer
Perceptron

Single Hidden Layer

Output

Hidden layer

Input
m neurons

Cats vs. dogs?
How to classify

Single Hidden Layer

• Input
• Hidden
• Intermediate output

x ∈ ℝd

h = σ(Wx + b)

is an element-wise
activation function

W ∈ ℝm×d, b ∈ ℝm

σ

Hidden layer

Input
m neurons

m x n n x 1 m x 1

=+

m x 1m × d d × 1 m × 1 m × 1

x ∈ ℝd

W b

Neural networks with one hidden layer

m x n n x 1 m x 1

=+

m x 1m × d d × 1 m × 1 m × 1

x ∈ ℝd

W b

Element-wise

activation function

Key elements: linear operations + Nonlinear activations

Neural networks with one hidden layer

Single Hidden Layer

• Output
• Normalize the output into

probability using sigmoid

f = w⊤
2 h + b2

p(y = 1 |x) = 1
1 + e−f

Sigmoid

Output

Hidden layer

Input
m neurons

Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

x ∈ ℝd

p(y |x) = softmax(f)

=
exp fy(x)

∑k
i exp fi(x)

Hidden layer

Input
m neurons

Output

fk

…
f1

Deep neural networks (DNNs)
f1 f2 h1 = σ(W1x + b1)

h2 = σ(W2h1 + b2)
h3 = σ(W3h2 + b3)

f = W4h3 + b4
y = softmax(f)

NNs are composition
of nonlinear

functions

Output

Hidden layer

Input
m neurons

How to train a neural network?
Loss function: 1

|D | ∑
i

ℓ(xi, yi)

ℓ(x, y) =
K

∑
j=1

− yj log pj

Per-sample loss:

Also known as cross-entropy loss
or softmax loss

Cross-Entropy Loss

0.8
Neural Networks

softmax
(model prediction)

0.2

True label

1

p Y

LCE = ∑
j

− yj log(pj)

= − log(0.8)

Goal: push p and Y to be identical

How to train a neural network?
Update the weights W to minimize the loss function

L = 1
|D | ∑

i
ℓ(xi, yi)

Use (stochastic) gradient descent!
Output

Hidden layer

Input
m neurons

Gradient Descent
• Choose a learning rate
• Initialize the model parameters
• For t =1,2,…

α > 0
w0

• Update parameters:

wt = wt−1 − α
∂L

∂wt−1

= wt−1 − α
1

|D | ∑
x∈D

∂ℓ(xi, yi)
∂wt−1

• Repeat until converges

D can
be very large.

Expensive

w0
w1

w2

Minibatch Stochastic Gradient Descent
• Choose a learning rate
• Initialize the model parameters
• For t =1,2,…

α > 0
w0

• Randomly sample a subset (mini-batch)
Update parameters:

B ⊂ D

wt = wt−1 − α
1

|B | ∑
x∈B

∂ℓ(xi, yi)
∂wt−1

• Repeat

Calculate gradient: backpropagation with chain rule

• Define a loss function L
• Gradient to a variable =

a = sigmoid(Wx + b)

gradient on the top x gradient from the current operation

!"
!# = !"

!%!
!%!
!#

z1 z2

Using SGD in PyTorch (code demo҂

Classify MNIST handwritten digits (HW6)

Brief history of neural networks

How to classify
Cats vs. dogs?

36M floats in a RGB image!

Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output

Hidden layer

Input
100 neurons

Fully Connected Networks

Convolutions come to rescue!

Why Convolution?
1. Translation Invariance

2. Locality 3. Less parameters

2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

2-D Convolution Layer

• input matrix
• kernel matrix
• b: scalar bias
• output matrix

• W and b are learnable parameters

Y = X ⋆ W + b

X : nh × nw
W : kh × kw

Y : (nh − kh + 1) × (nw − kw + 1)

2-D Convolution Layer with Stride and Padding
• Stride is the #rows/#columns per slide
• Padding adds rows/columns around input
• Output shape

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

StridePad

Kernel/filter size

Input size

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a 2D kernel for each channel, and then sum results over

channels

*
One 3D kernel

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Also call each 3D kernel a “filter”, which produce only one

output channel (due to summation over channels)

*
One filter

(3 channels) RGB (3 input channels)

Multiple filters (in one layer)
• Apply multiple filters on the input
• Each filter may learn different features about the input
• Each filter (3D kernel) produces one output channel

*
RGB (3 input channels)

A different filter

Conv1 Filters in AlexNet
• 96 filters (each of size 11x11x3)
• Gabor filters

Figures from Visualizing and Understanding Convolutional Networks
by M. Zeiler and R. Fergus

Multiple Output Channels
• The # of output channels = # of filters
• Input
• Kernel
• Output

X : ci × nh × nw
W : co × ci × kh × kw
Y : co × mh × mw

Yi,:,: = X ⋆ Wi,:,:,:
for i = 1,…, co

Convolutional Neural Networks

gluon-cv.mxnet.io

LeNet Architecture

Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

LeNet in Pytorch (HW7)

Connect theory and practice

Quiz break
Which one of the following is NOT true?

A. LeNet has two convolutional layers

B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB input

C. Pooling is performed right after convolution

D. Pooling layer does not have learnable parameters

Quiz break
Which one of the following is NOT true?

A. LeNet has two convolutional layers

B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB input

C. Pooling is performed right after convolution

D. Pooling layer does not have learnable parameters

Pooling is performed after ReLU: conv->relu->pooling

Evolution of neural net architectures

LeNet AlexNet

Inception
Net

ResNet
DenseNet

Deng et al. 2009

AlexNet

[Krizhevsky et al. 2012]

AlexNet vs LeNet Architecture

LeNetAlexNet

Larger kernel size, stride
because of the increased

image size, and more
output channels.

Larger pool size, change
to max pooling

Image (227x227x3) *

*Note that the original paper used 224x224x3, which was incorrect

AlexNet Architecture

LeNet

AlexNet

More output channels.

3 additional
convolutional layers

ResNet: Going deeper in depth

[He et al. 2015]ImageNet Top-5 error%

[He et al. 2015]

• Stack residual blocks

• Every residual block has two 3x3
conv layers

• Periodically, double # of filters
and downsample spatially using
stride of 2 (/2 in each dimension)

Full ResNet Architecture

(Figure from Stanford CS231n)

[More advanced topics covered in CS762]

Brief history of neural networks

What we’ve learned today…
• Modeling a single neuron

• Linear perceptron

• Limited power of a single neuron

• Multi-layer perceptron

• Training of neural networks

• Loss function (cross entropy)

• Backpropagation and SGD

• Convolutional neural networks

• Convolution, pooling, stride, padding

• Basic architectures (LeNet etc.)

• More advanced architectures (AlexNet, ResNet etc)

Thank you!
Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:
https://courses.d2l.ai/berkeley-stat-157/index.html

