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Inspiration from neuroscience
- Inspirations from human brains

- Networks of simple and homogenous units (a.k.a neuron)

(wikipedia)



How to classify 
Cats vs. dogs?

 

Single-layer 
Perceptron

Multi-layer 
Perceptron

Training of neural 
networks

Convolutional 
neural networks



Perceptron
• Given input    , weight     and bias    , perceptron outputs:

o = σ (w⊤x + b) σ(x) = {1 if x > 0
0 otherwise

x w b

Input 

Cats vs. dogs?

Activation function

Output (0 or 1)

w1
w2

wd

x1

x2

xd



Perceptron
• Goal: learn parameters  and b to 

minimize the classification error  
w = {w1, w2, . . . , wd}

Cats vs. dogs?

Input Output (0 or 1)

w1
w2

wd

x1

x2

xd



Learning logic functions using perceptron

The perceptron can learn an AND function 

0 1

1

x1 = 1,x2 = 1,y = 1
x1 = 1,x2 = 0,y = 0
x1 = 0,x2 = 1,y = 0
x1 = 0,x2 = 0,y = 0

x1

x2



The perceptron can learn an AND function 

0 1

1

Output 

w2

w1
σ(x1w1 + x2w2 + b)

σ(x) = {1 if x > 0
0 otherwise

w1 = 1,w2 = 1,b = − 1.5
x1

x2

Learning logic functions using perceptron



Learning OR function using perceptron
The perceptron can learn an OR function 

0 1

1

Output 

w2

w1
σ(x1w1 + x2w2 + b)

σ(x) = {1 if x > 0
0 otherwise

w1 = 1,w2 = 1,b = − 0.5
x1

x2



XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function 
(neurons can only generate linear separators)

This contributed to the first AI winter

x1 = 1,x2 = 1,y = 0
x1 = 1,x2 = 0,y = 1
x1 = 0,x2 = 1,y = 1
x1 = 0,x2 = 0,y = 0



Quiz break
Which one of the following is NOT true about perceptron?


A. Perceptron only works if the data is linearly separable.

B. Perceptron can learn AND function

C. Perceptron can learn XOR function

D. Perceptron is a supervised learning algorithm



Quiz break
Which one of the following is NOT true about perceptron?


A. Perceptron only works if the data is linearly separable.

B. Perceptron can learn AND function

C. Perceptron can learn XOR function

D. Perceptron is a supervised learning algorithm



Multilayer 
Perceptron



Single Hidden Layer

Output 

Hidden layer 

Input 
m neurons

Cats vs. dogs?
How to classify 



Single Hidden Layer

• Input 
• Hidden 
• Intermediate output   

x ∈ ℝd

h = σ(Wx + b)

is an element-wise  
activation function 

W ∈ ℝm×d, b ∈ ℝm

σ

Hidden layer 

Input 
m neurons



m x n n x 1 m x 1

=+

m x 1m × d d × 1 m × 1 m × 1

x ∈ ℝd

W b

Neural networks with one hidden layer



m x n n x 1 m x 1

=+

m x 1m × d d × 1 m × 1 m × 1

x ∈ ℝd

W b

Element-wise 

activation function

Key elements: linear operations + Nonlinear activations

Neural networks with one hidden layer



Single Hidden Layer

• Output 
• Normalize the output into 

probability using sigmoid   

f = w⊤
2 h + b2

p(y = 1 |x) = 1
1 + e−f

Sigmoid

Output 

Hidden layer 

Input 
m neurons



Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

x ∈ ℝd

p(y |x) = softmax(f)

=
exp fy(x)

∑k
i exp fi(x)

Hidden layer 

Input 
m neurons

Output 

fk

…
f1



Deep neural networks (DNNs)
f1 f2 h1 = σ(W1x + b1)

h2 = σ(W2h1 + b2)
h3 = σ(W3h2 + b3)

f = W4h3 + b4
y = softmax(f)

NNs are composition 
of nonlinear 

functions



Output 

Hidden layer 

Input 
m neurons

How to train a neural network?
Loss function: 1

|D | ∑
i

ℓ(xi, yi)

ℓ(x, y) =
K

∑
j=1

− yj log pj

Per-sample loss:

Also known as cross-entropy loss  
or softmax loss



Cross-Entropy Loss

0.8
Neural Networks

softmax 
(model prediction)

0.2

True label 

1

p Y

LCE = ∑
j

− yj log(pj)

= − log(0.8)

Goal: push p and Y to be identical



How to train a neural network?
Update the weights W to minimize the loss function

L = 1
|D | ∑

i
ℓ(xi, yi)

Use (stochastic) gradient descent! 
Output 

Hidden layer 

Input 
m neurons



Gradient Descent
• Choose a learning rate  
• Initialize the model parameters  
• For t =1,2,…

α > 0
w0

• Update parameters:

wt = wt−1 − α
∂L

∂wt−1

= wt−1 − α
1

|D | ∑
x∈D

∂ℓ(xi, yi)
∂wt−1

• Repeat until converges

D can 
be very large. 

Expensive 

w0
w1

w2



Minibatch Stochastic Gradient Descent
• Choose a learning rate  
• Initialize the model parameters  
• For t =1,2,…

α > 0
w0

• Randomly sample a subset (mini-batch) 
Update parameters:

B ⊂ D

wt = wt−1 − α
1

|B | ∑
x∈B

∂ℓ(xi, yi)
∂wt−1

• Repeat



Calculate gradient: backpropagation with chain rule

• Define a loss function L
• Gradient to a variable = 

a = sigmoid(Wx + b)

gradient on the top  x  gradient from the current operation 

!"
!# = !"

!%!
!%!
!#

z1 z2



Using SGD in PyTorch (code demo҂



Classify MNIST handwritten digits (HW6)



Brief history of neural networks



How to classify 
Cats vs. dogs?

36M floats in a RGB image!



Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output 

Hidden layer 

Input 
100 neurons

Fully Connected Networks



Convolutions come to rescue! 



Why Convolution?
1. Translation Invariance

2. Locality 3. Less parameters



2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.



2-D Convolution Layer

•                   input matrix 
•                   kernel matrix 
• b: scalar bias 
•                                                  output matrix 

 

• W and b are learnable parameters 

Y = X ⋆ W + b

X : nh × nw
W : kh × kw

Y : (nh − kh + 1) × (nw − kw + 1)



2-D Convolution Layer with Stride and Padding
• Stride is the #rows/#columns per slide 
• Padding adds rows/columns around input 
• Output shape

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

StridePad

Kernel/filter size

Input size



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels 
• Have a kernel for each channel, and then sum results over 

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels 
• Have a 2D kernel for each channel, and then sum results over 

channels

*
One 3D kernel



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels 
• Also call each 3D kernel a “filter”, which produce only one 

output channel (due to summation over channels)

*
One filter 

(3 channels) RGB (3 input channels)



Multiple filters (in one layer)
• Apply multiple filters on the input 
• Each filter may learn different features about the input 
• Each filter (3D kernel) produces one output channel

*
RGB (3 input channels)

A different filter



Conv1 Filters in AlexNet
• 96 filters (each of size 11x11x3) 
• Gabor filters

Figures from Visualizing and Understanding Convolutional Networks 
by M. Zeiler and R. Fergus 



Multiple Output Channels
• The # of output channels = # of filters  
• Input 
• Kernel 
• Output 

X : ci × nh × nw
W : co × ci × kh × kw
Y : co × mh × mw

Yi,:,: = X ⋆ Wi,:,:,:
for i = 1,…, co



Convolutional Neural Networks



gluon-cv.mxnet.io

LeNet Architecture



Y. LeCun, L. 
Bottou, Y. Bengio, 
P. Haffner, 1998 
Gradient-based 
learning applied to 
document 
recognition



LeNet in Pytorch (HW7)

 

Connect theory and practice



Quiz break
Which one of the following is NOT true?


A. LeNet has two convolutional layers

B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB input

C. Pooling is performed right after convolution

D. Pooling layer does not have learnable parameters



Quiz break
Which one of the following is NOT true?


A. LeNet has two convolutional layers

B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB input

C. Pooling is performed right after convolution

D. Pooling layer does not have learnable parameters

Pooling is performed after ReLU: conv->relu->pooling



Evolution of neural net architectures

LeNet AlexNet

Inception 
Net

ResNet
DenseNet



Deng et al. 2009



AlexNet

[Krizhevsky et al. 2012]



AlexNet vs LeNet Architecture 

LeNetAlexNet

Larger kernel size, stride 
because of the increased 

image size, and more 
output channels.

Larger pool size, change 
to max pooling 

Image (227x227x3)  *

*Note that the original paper used 224x224x3, which was incorrect



AlexNet Architecture 

LeNet

AlexNet

More output channels.

3 additional 
convolutional  layers



ResNet: Going deeper in depth

[He et al. 2015]ImageNet Top-5 error%



[He et al. 2015]

• Stack residual blocks


• Every residual block has two 3x3 
conv layers


•  Periodically, double # of filters 
and downsample spatially using 
stride of 2 (/2 in each dimension)

Full ResNet Architecture

(Figure from Stanford CS231n)

[More advanced topics covered in CS762]



Brief history of neural networks



What we’ve learned today…
• Modeling a single neuron


• Linear perceptron


• Limited power of a single neuron


• Multi-layer perceptron


• Training of neural networks


• Loss function (cross entropy)


• Backpropagation and SGD 


• Convolutional neural networks


• Convolution, pooling, stride, padding 


• Basic architectures (LeNet etc.)


• More advanced architectures (AlexNet, ResNet etc)



Thank you!
Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li: 
https://courses.d2l.ai/berkeley-stat-157/index.html 


