

CS540 Introduction to Artificial Intelligence (Deep) Neural Networks Summary Yudong Chen University of Wisconsin-Madison

November 9, 2021

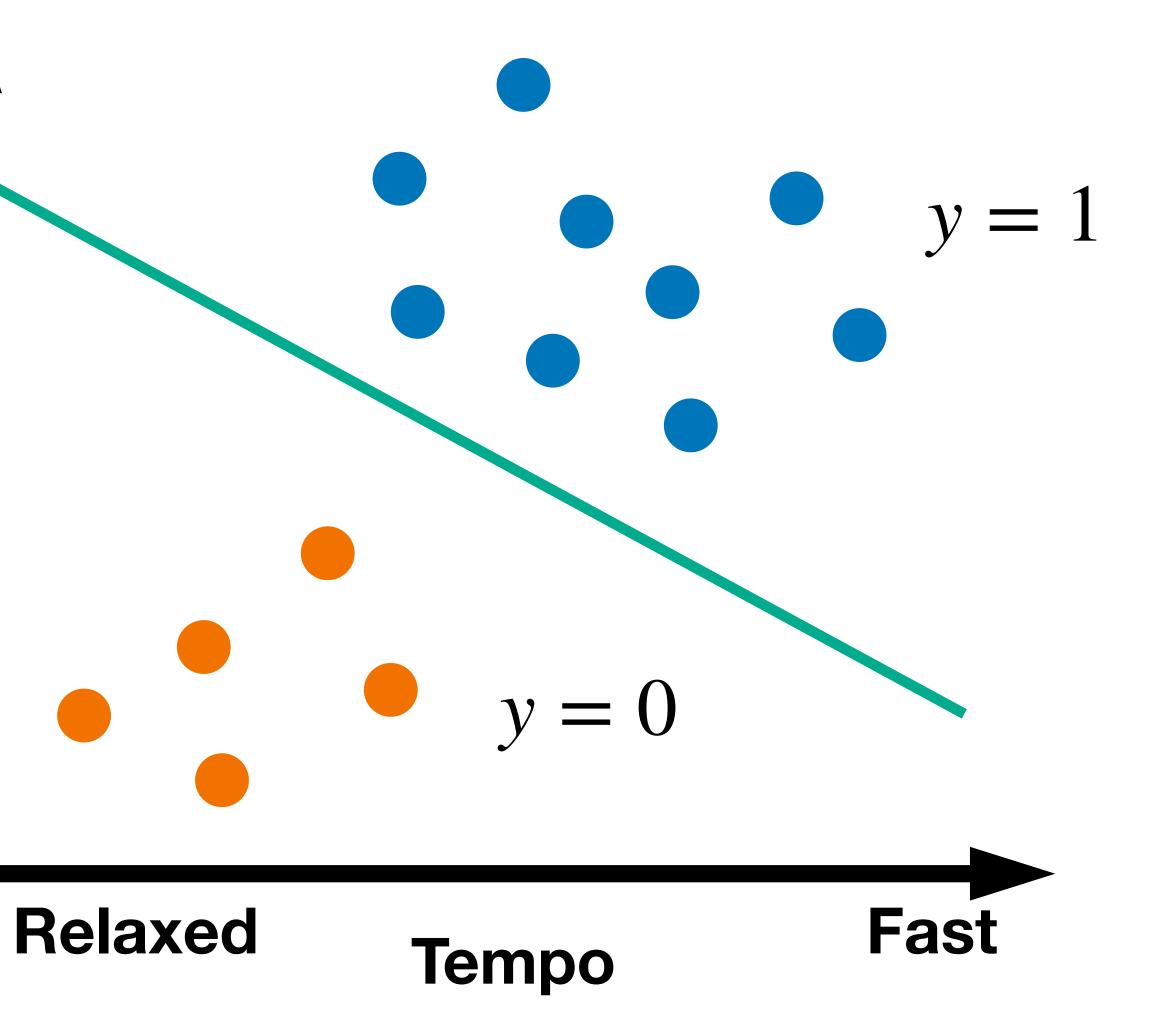
Slides created by Sharon Li [modified by Yudong Chen]

Predict whether a user likes a song or not

Intensity



User Sharon



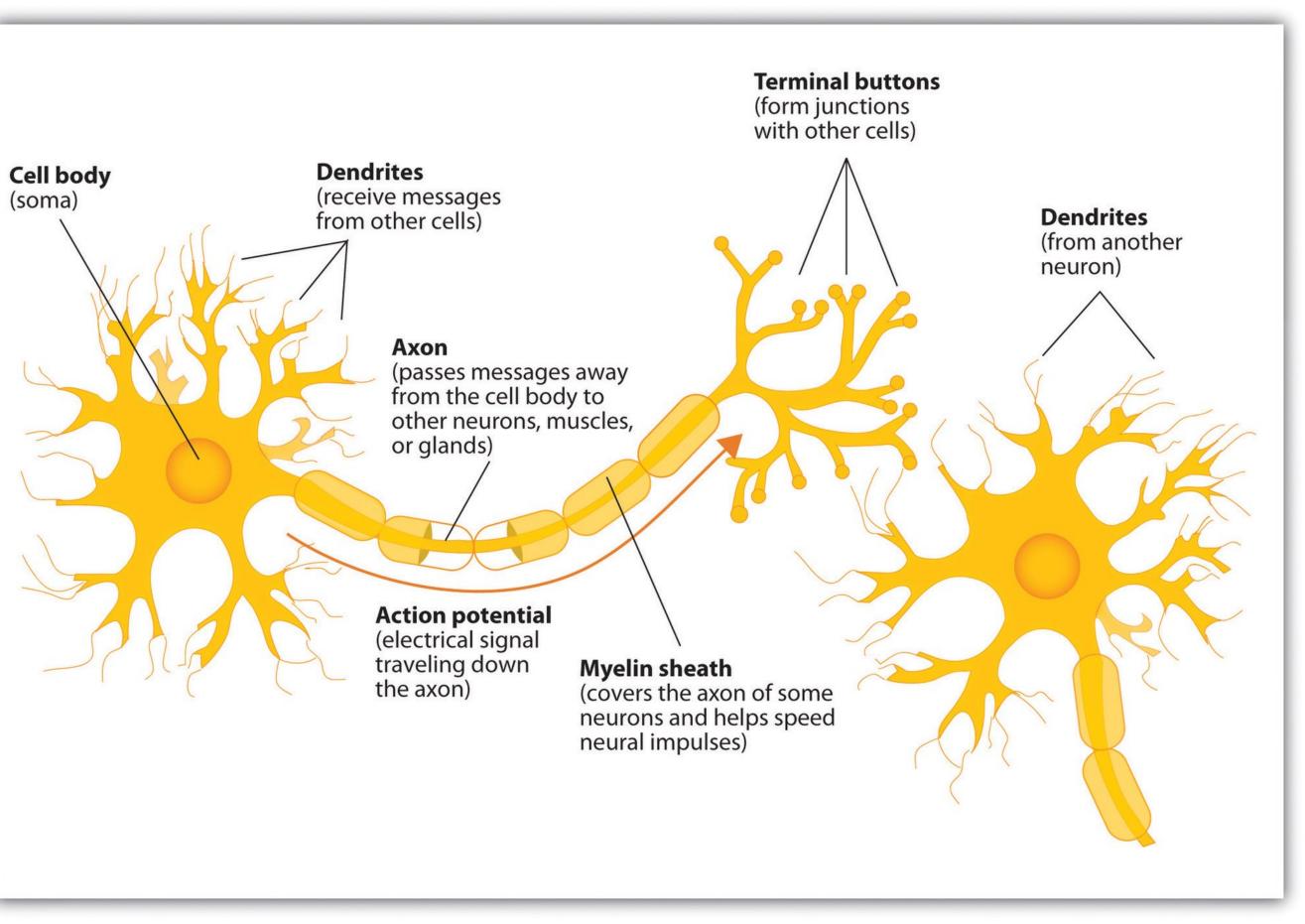
Inspiration from neuroscience

- Inspirations from human brains

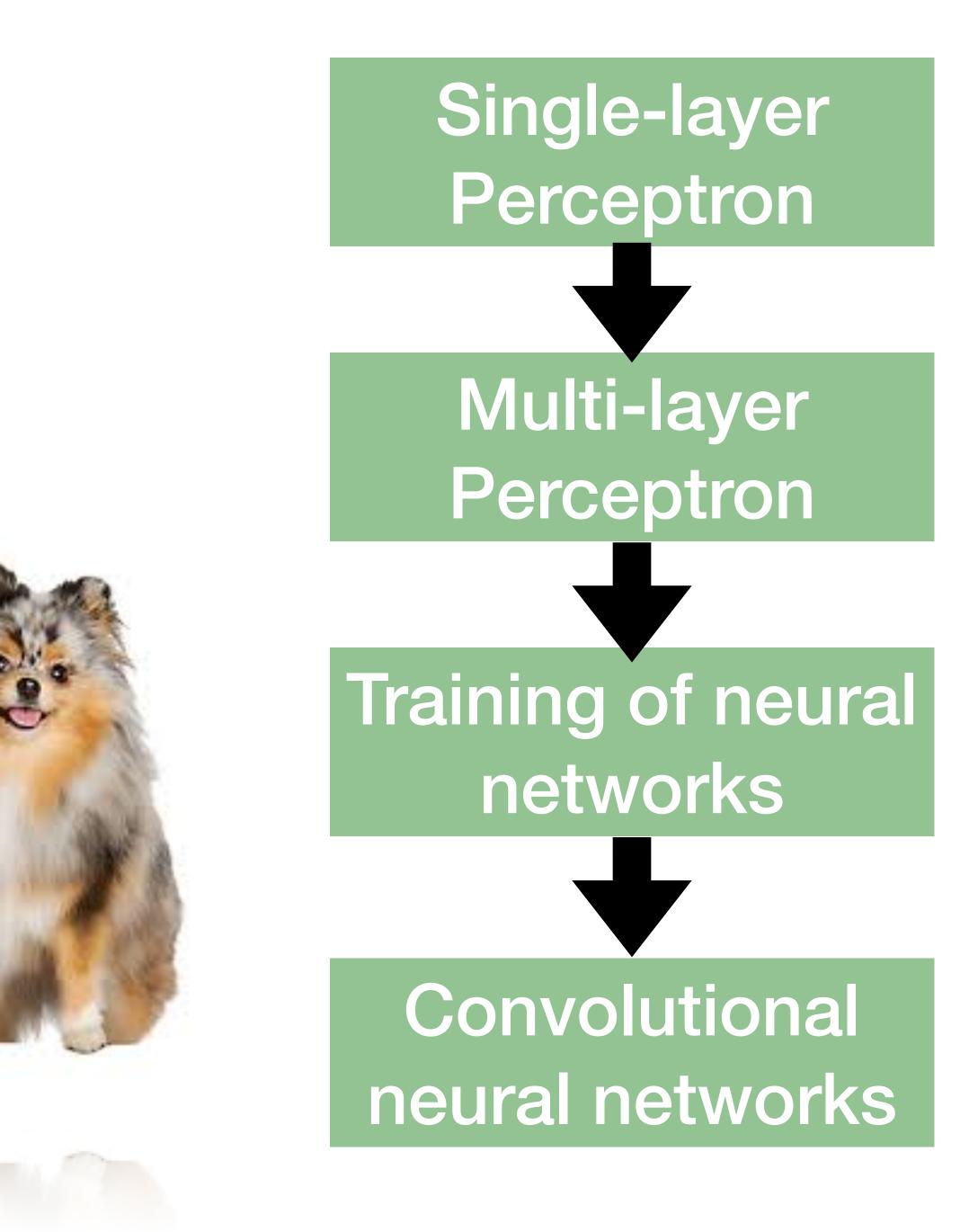
(soma)

(wikipedia)

- Networks of simple and homogenous units (a.k.a neuron)



How to classify Cats vs. dogs?

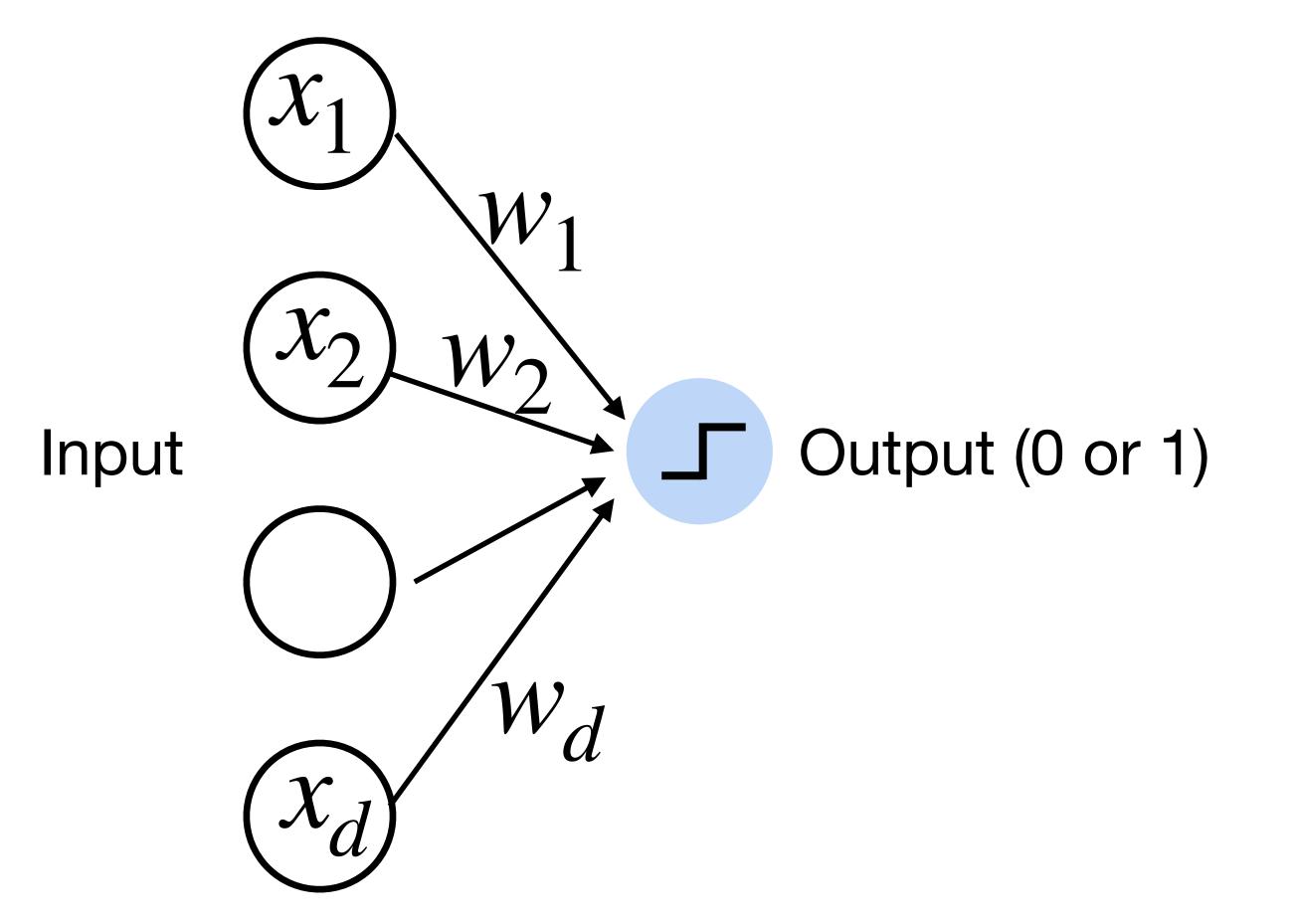


Perceptron

 $o = \sigma \left(\mathbf{w}^{\mathsf{T}} \mathbf{x} + b \right)$

Cats vs. dogs?

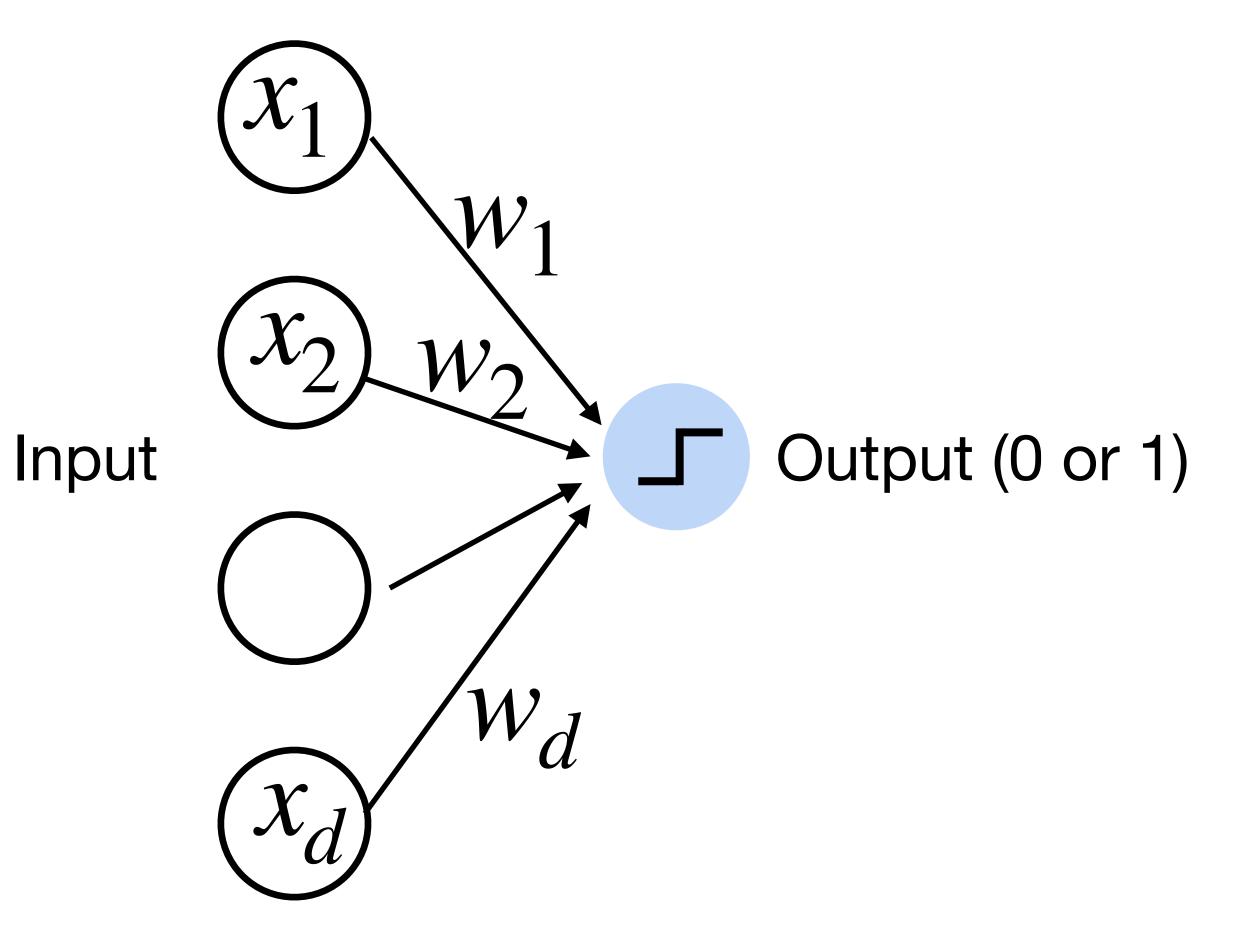
• Given input x, weight w and bias b, perceptron outputs: $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ Activation function



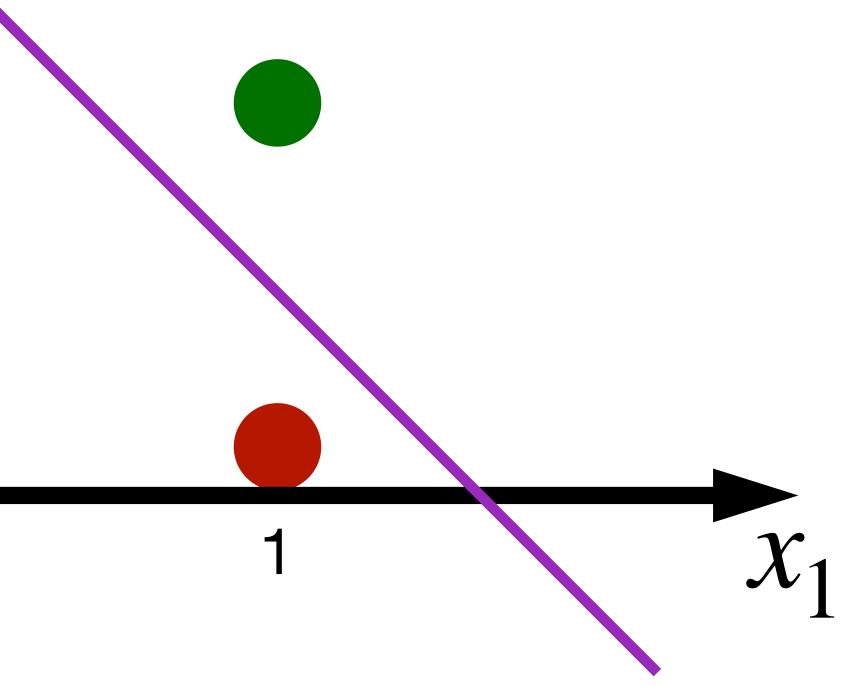
Perceptron

• Goal: learn parameters $\mathbf{W} = \{w_1, w_2, \dots, w_d\}$ and b to minimize the classification error

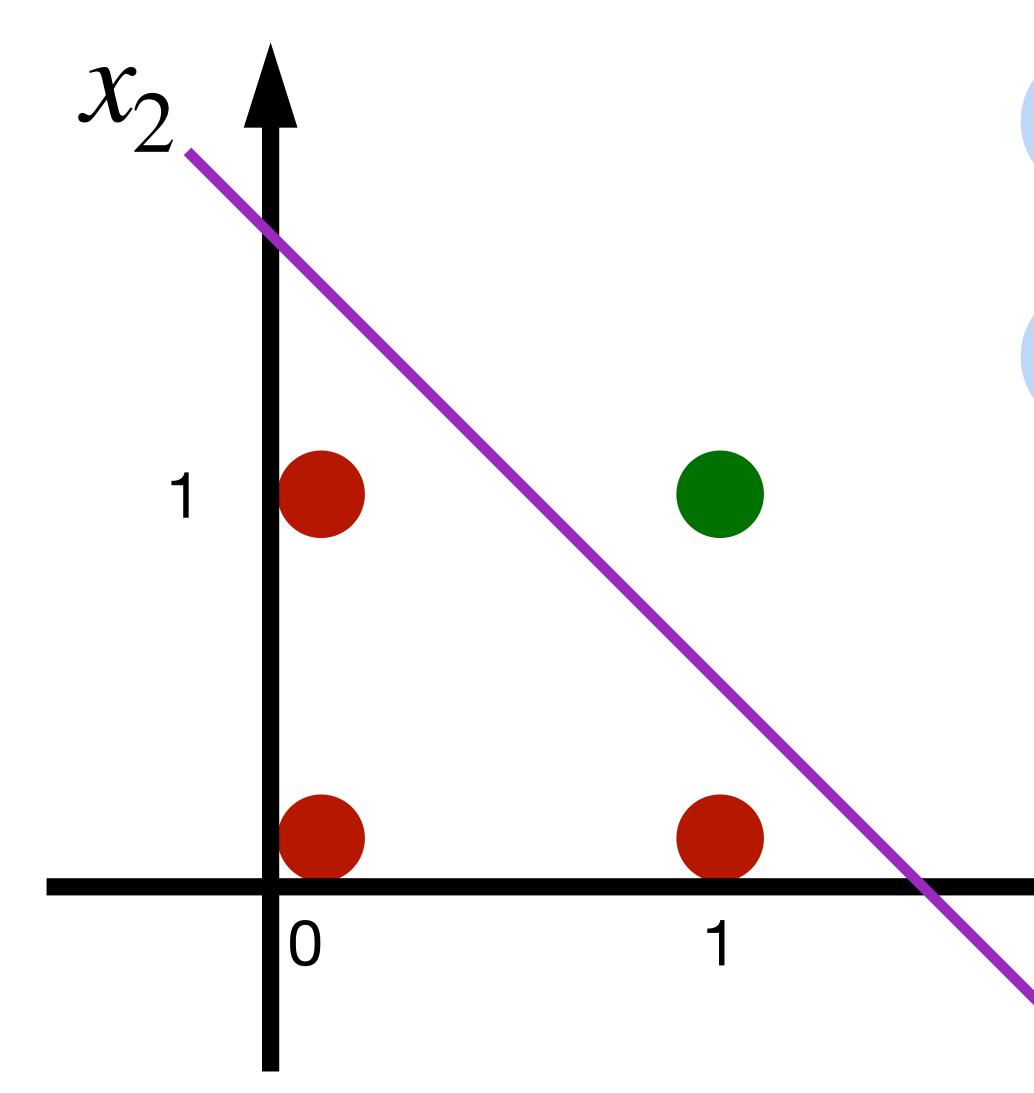
Cats vs. dogs?

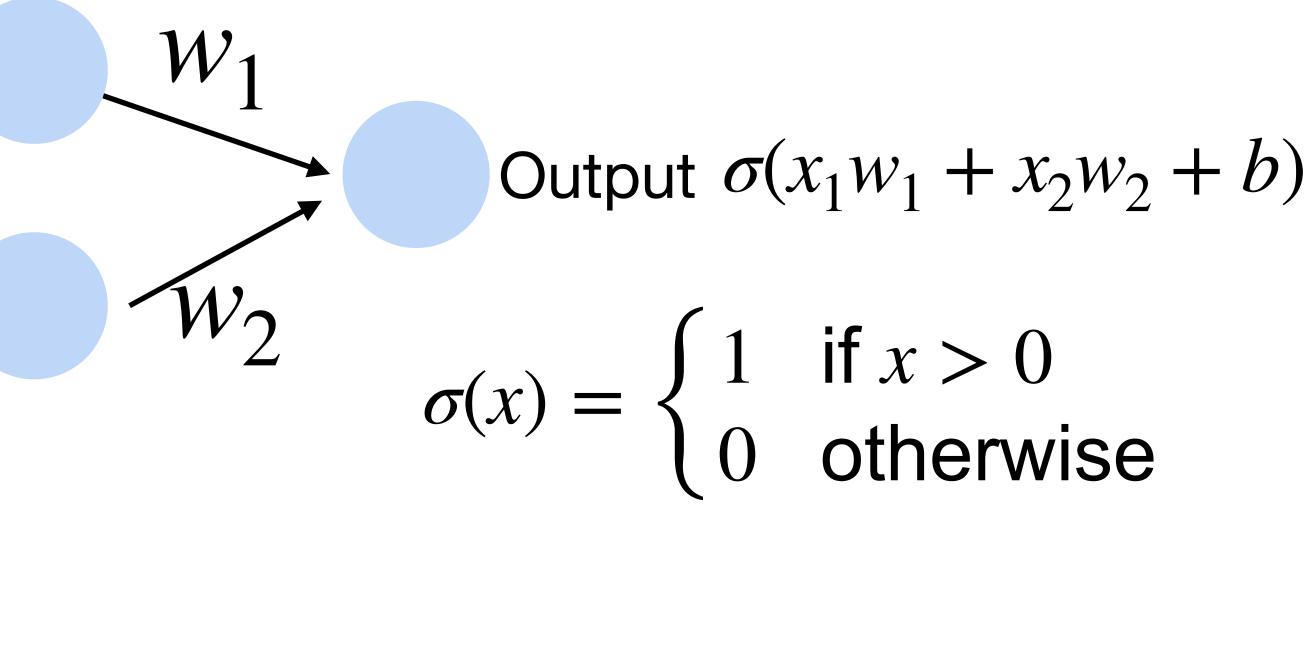


Learning logic functions using perceptron The perceptron can learn an AND function $x_1 = 1, x_2 = 1, y = 1$ $x_1 = 1, x_2 = 0, y = 0$ $x_1 = 0, x_2 = 1, y = 0$ $x_1 = 0, x_2 = 0, y = 0$

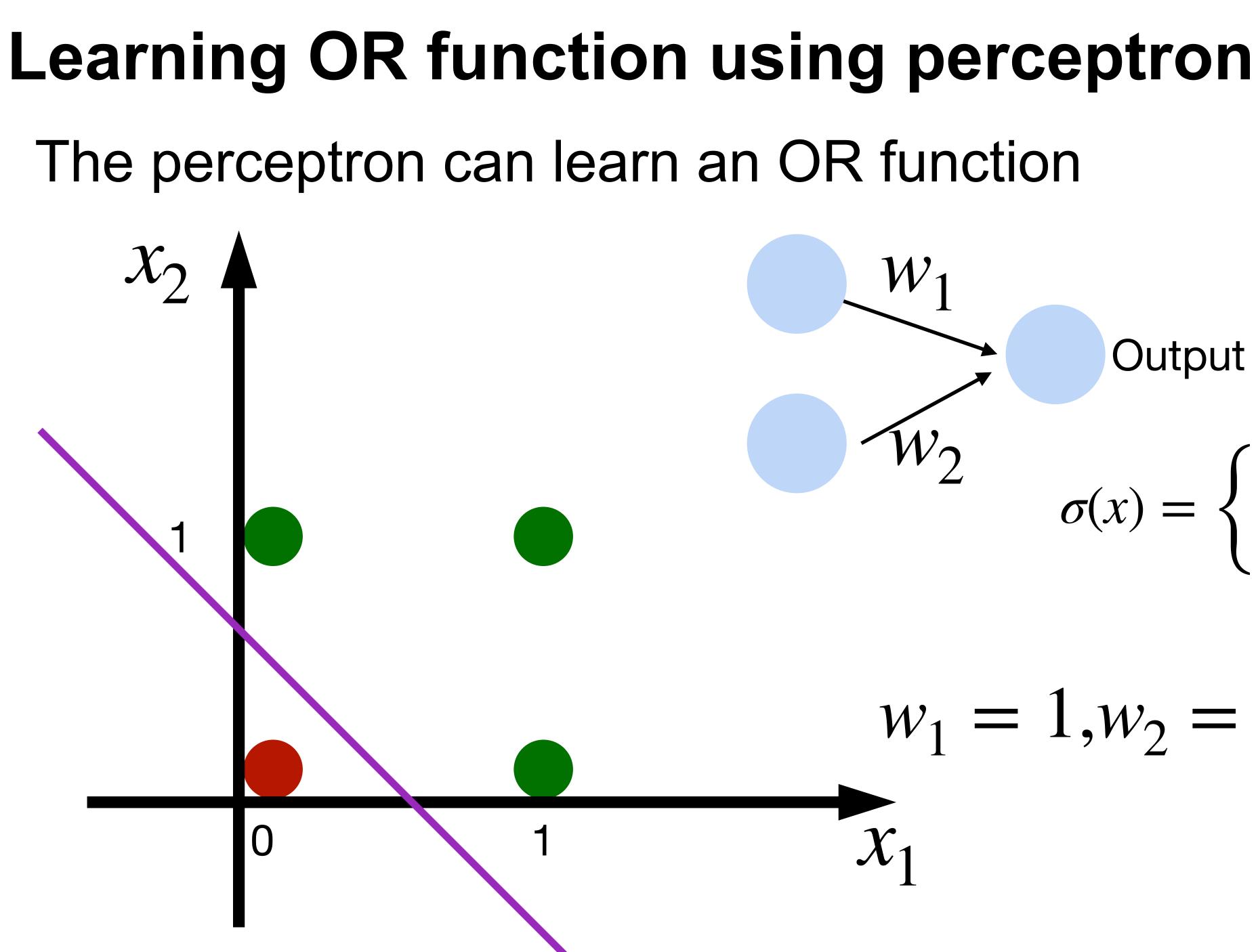


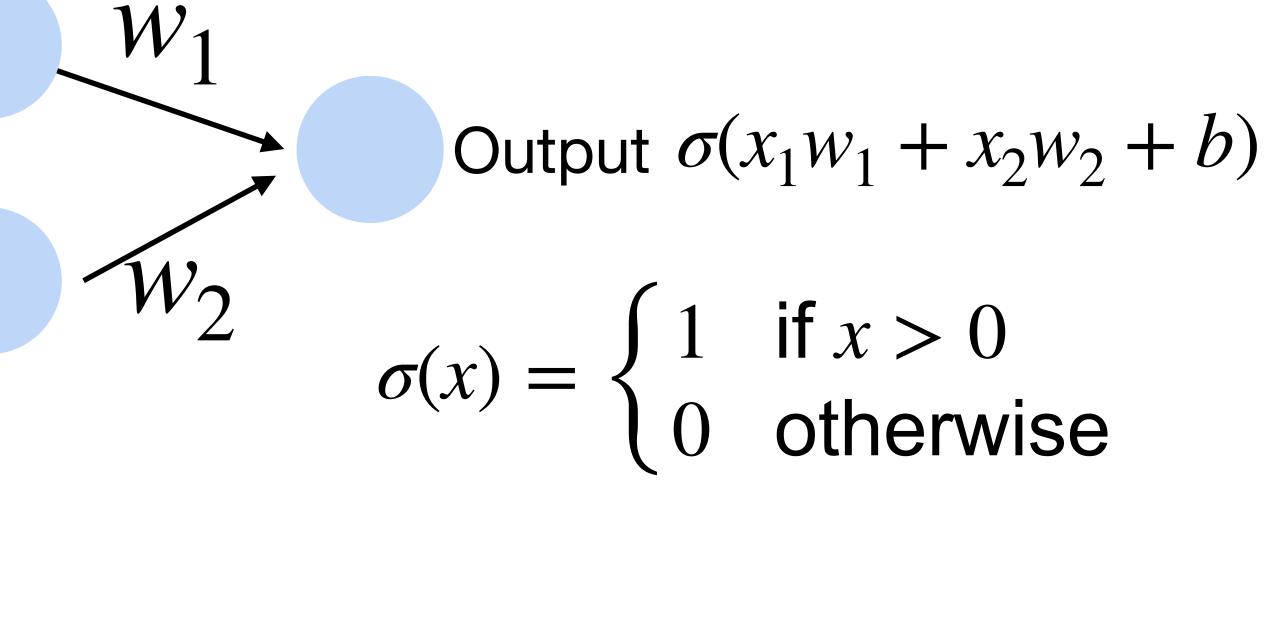
Learning logic functions using perceptron The perceptron can learn an AND function





 $w_1 = 1, w_2 = 1, b = -1.5$



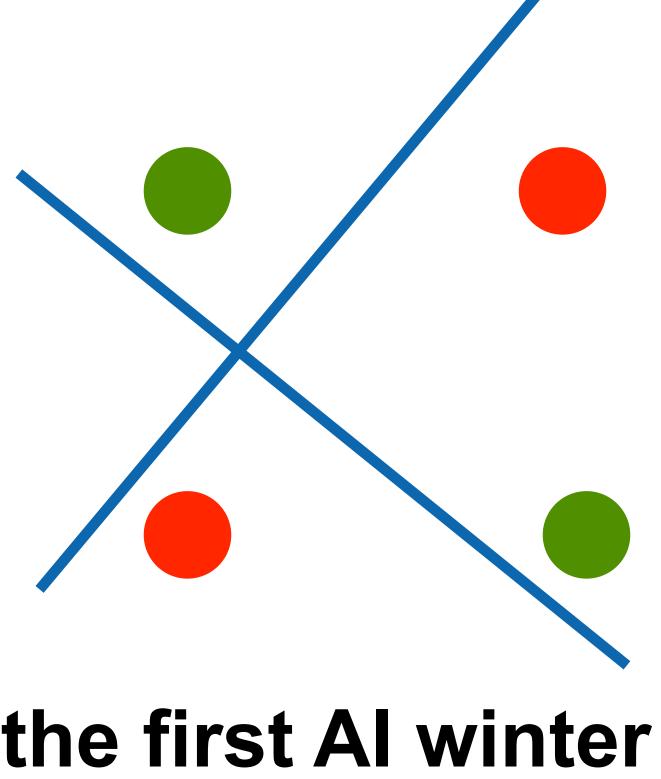


 $w_1 = 1, w_2 = 1, b = -0.5$

XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)

- $x_1 = 1, x_2 = 1, y = 0$
- $x_1 = 1, x_2 = 0, y = 1$
- $x_1 = 0, x_2 = 1, y = 1$
- $x_1 = 0, x_2 = 0, y = 0$



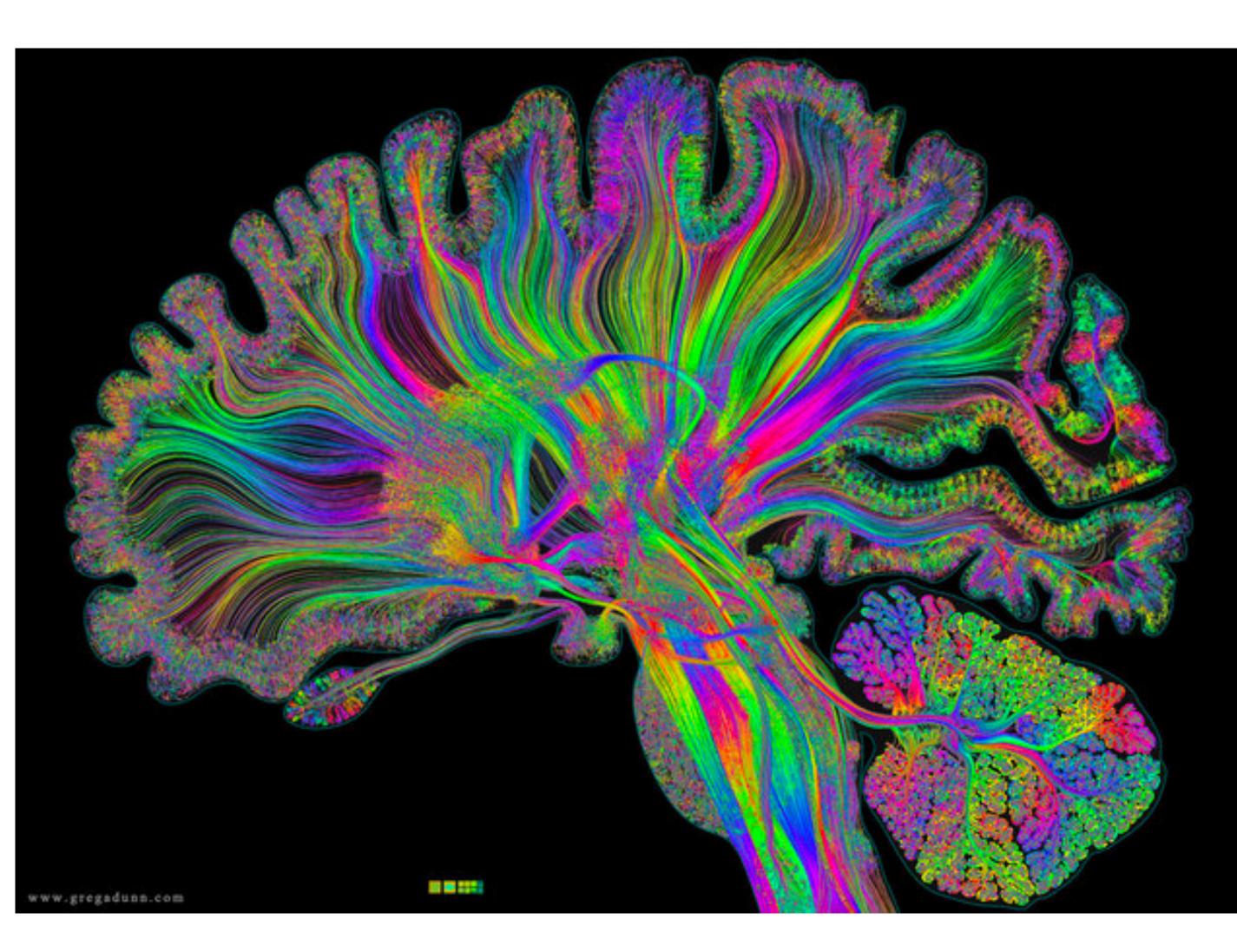
This contributed to the first AI winter

Quiz break

Which one of the following is NOT true about perceptron?

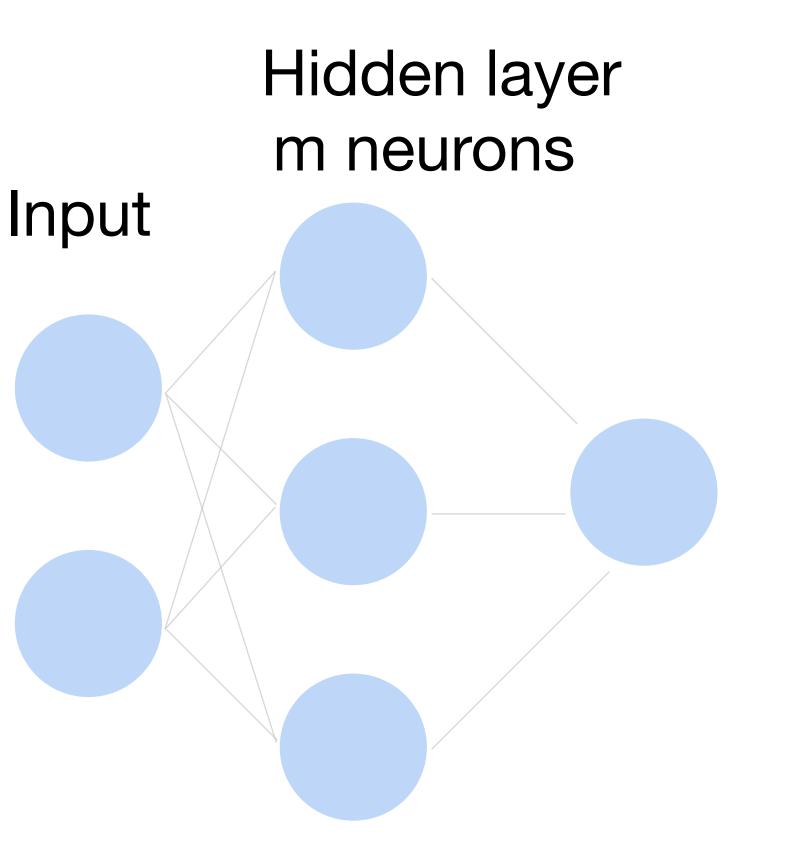
- A. Perceptron only works if the data is linearly separable.
- B. Perceptron can learn AND function
- C. Perceptron can learn XOR function
- D. Perceptron is a supervised learning algorithm

Multilayer Perceptron



Single Hidden Layer

How to classify Cats vs. dogs?

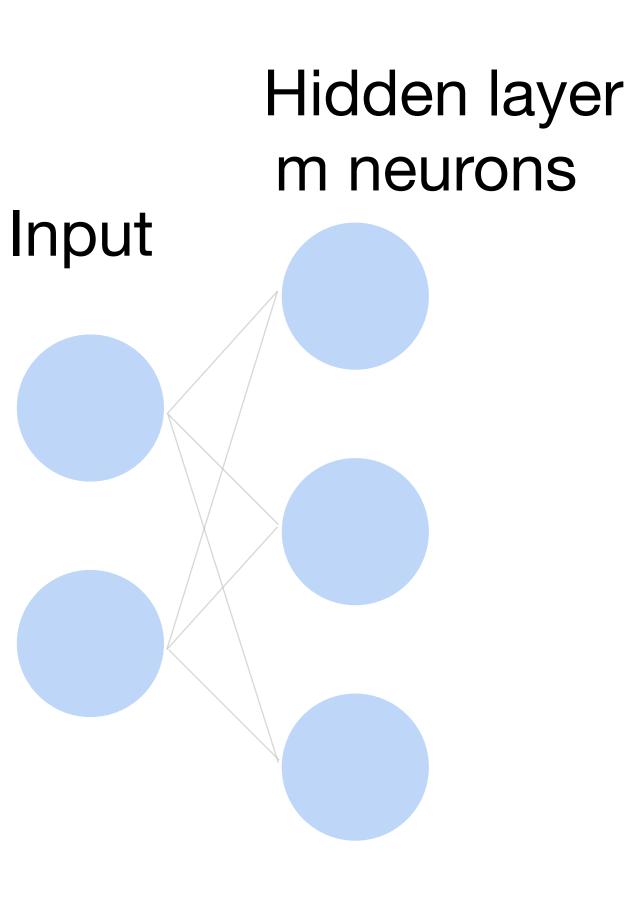


Output

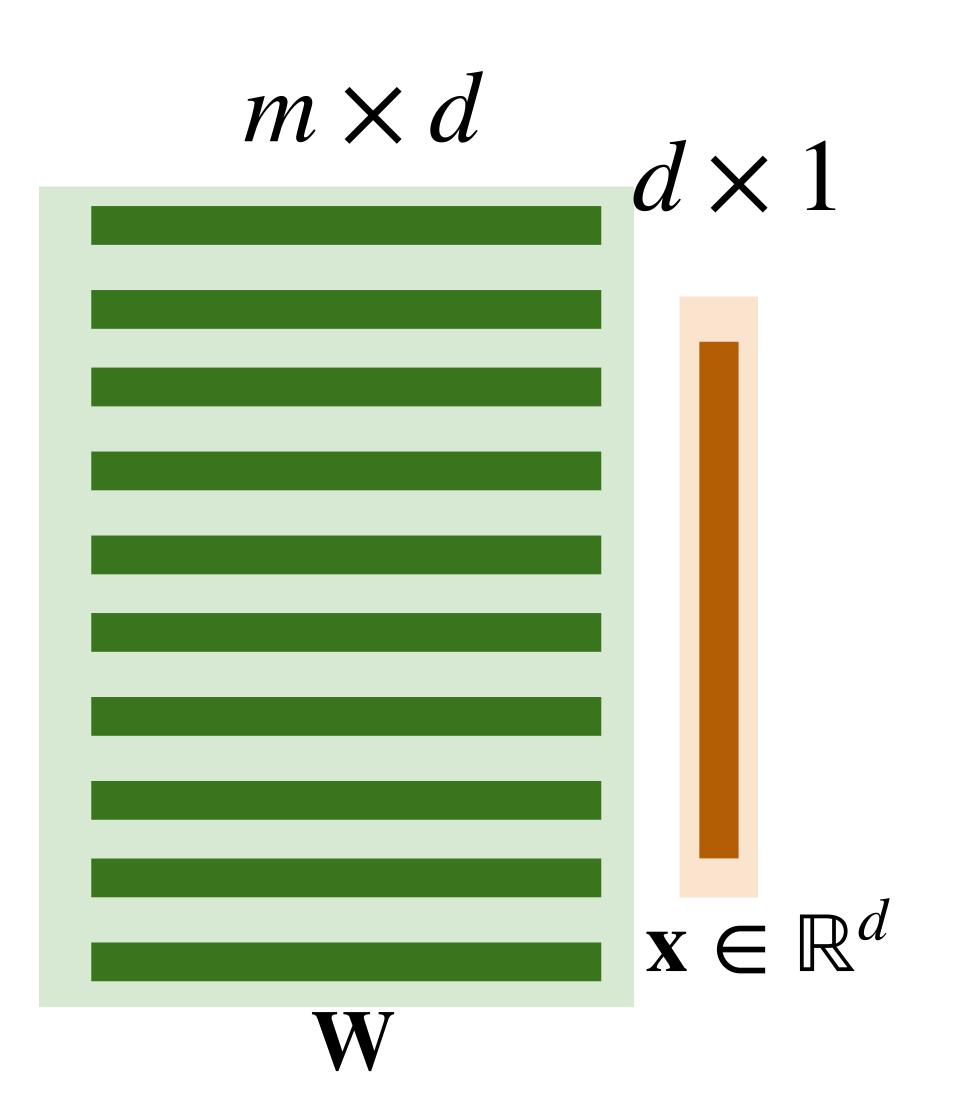
Single Hidden Layer

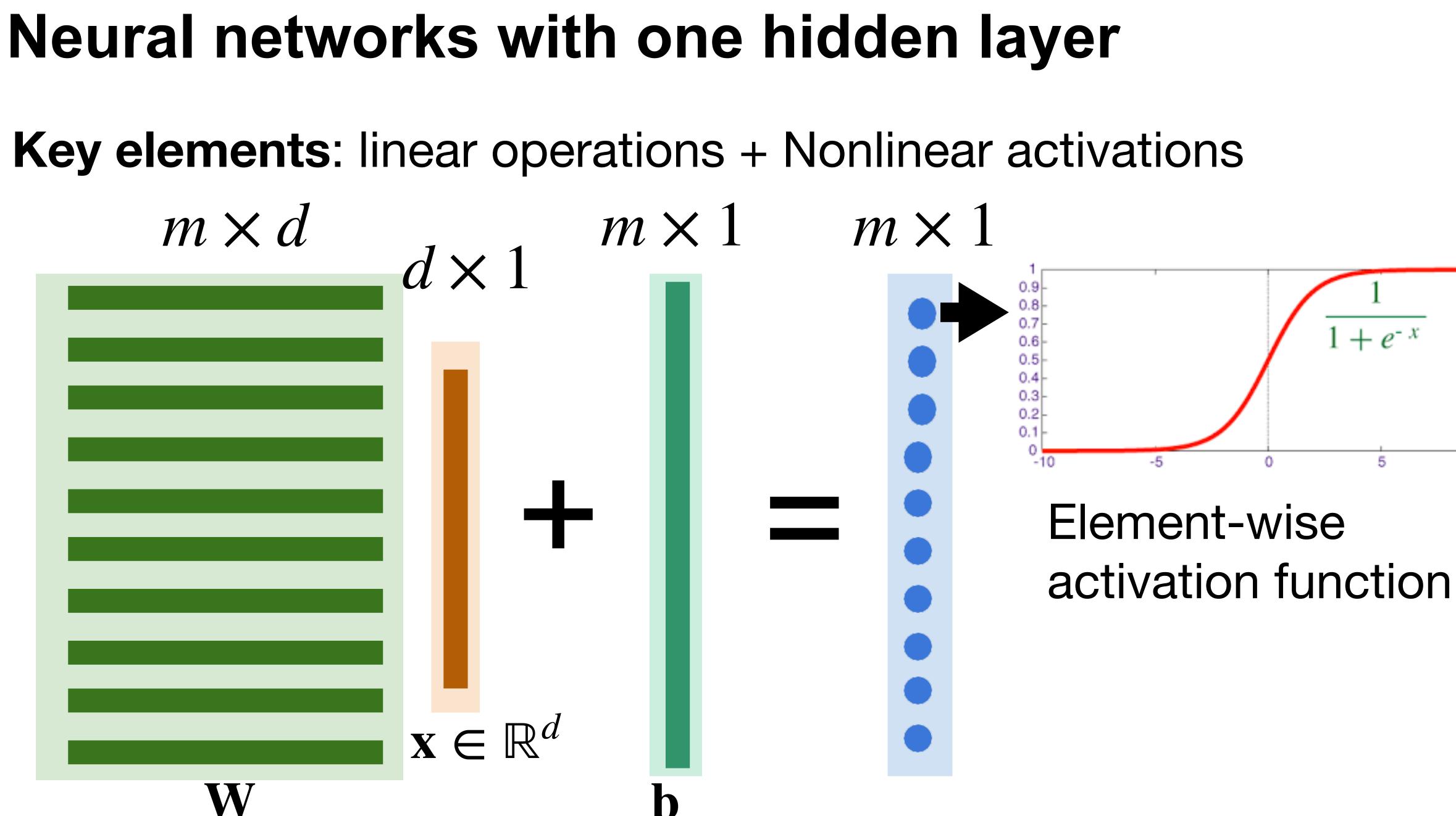
- Input $\mathbf{x} \in \mathbb{R}^d$
- Hidden $\mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^m$
- Intermediate output $\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$

σ is an element-wise activation function



Neural networks with one hidden layer

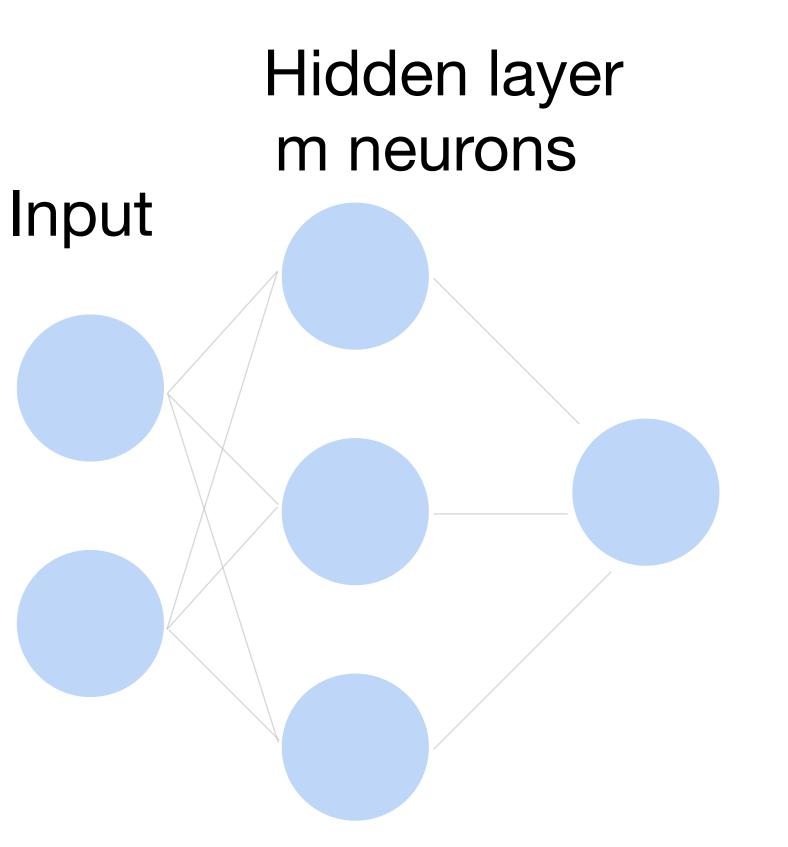




Single Hidden Layer

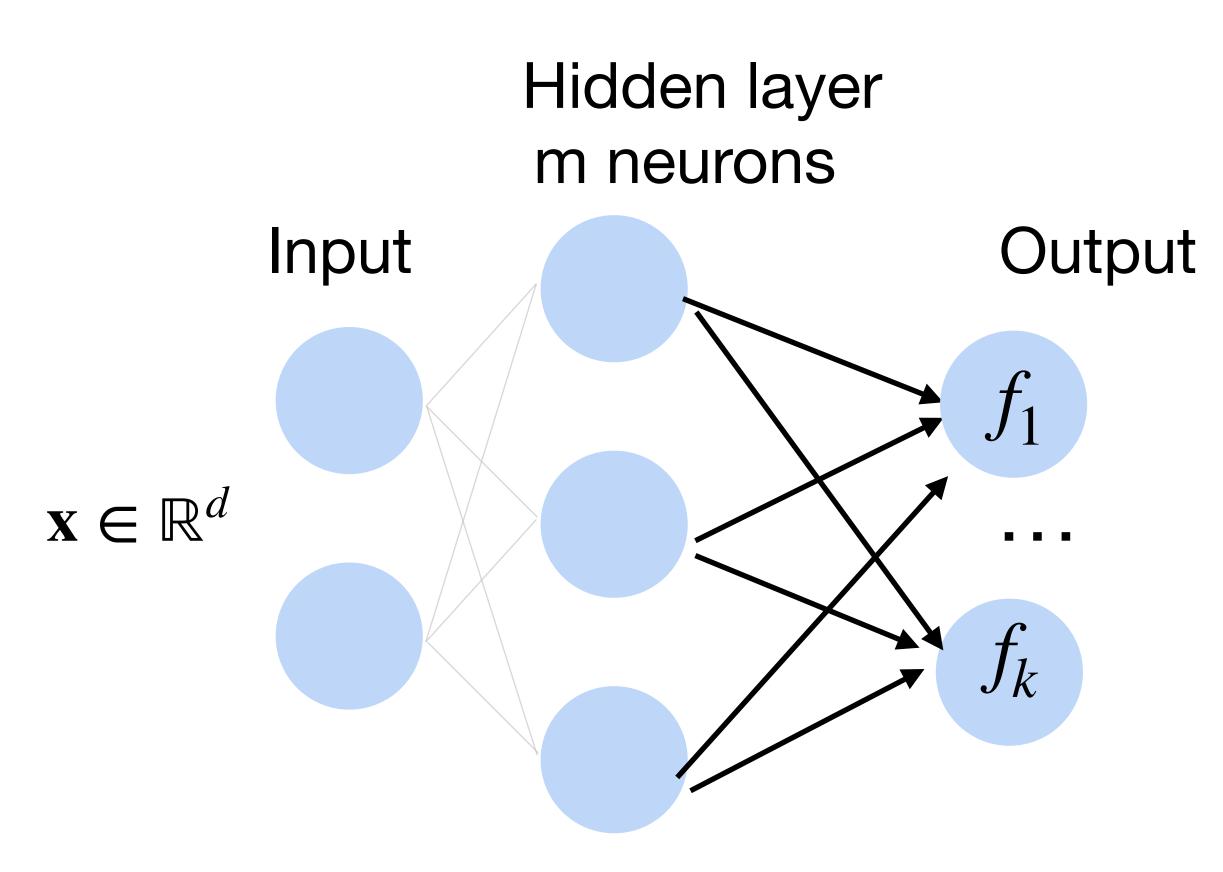
- Output $f = \mathbf{w}_2^{\mathsf{T}}\mathbf{h} + b_2$
- Normalize the output into probability using sigmoid

$$p(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-f}}$$



Output

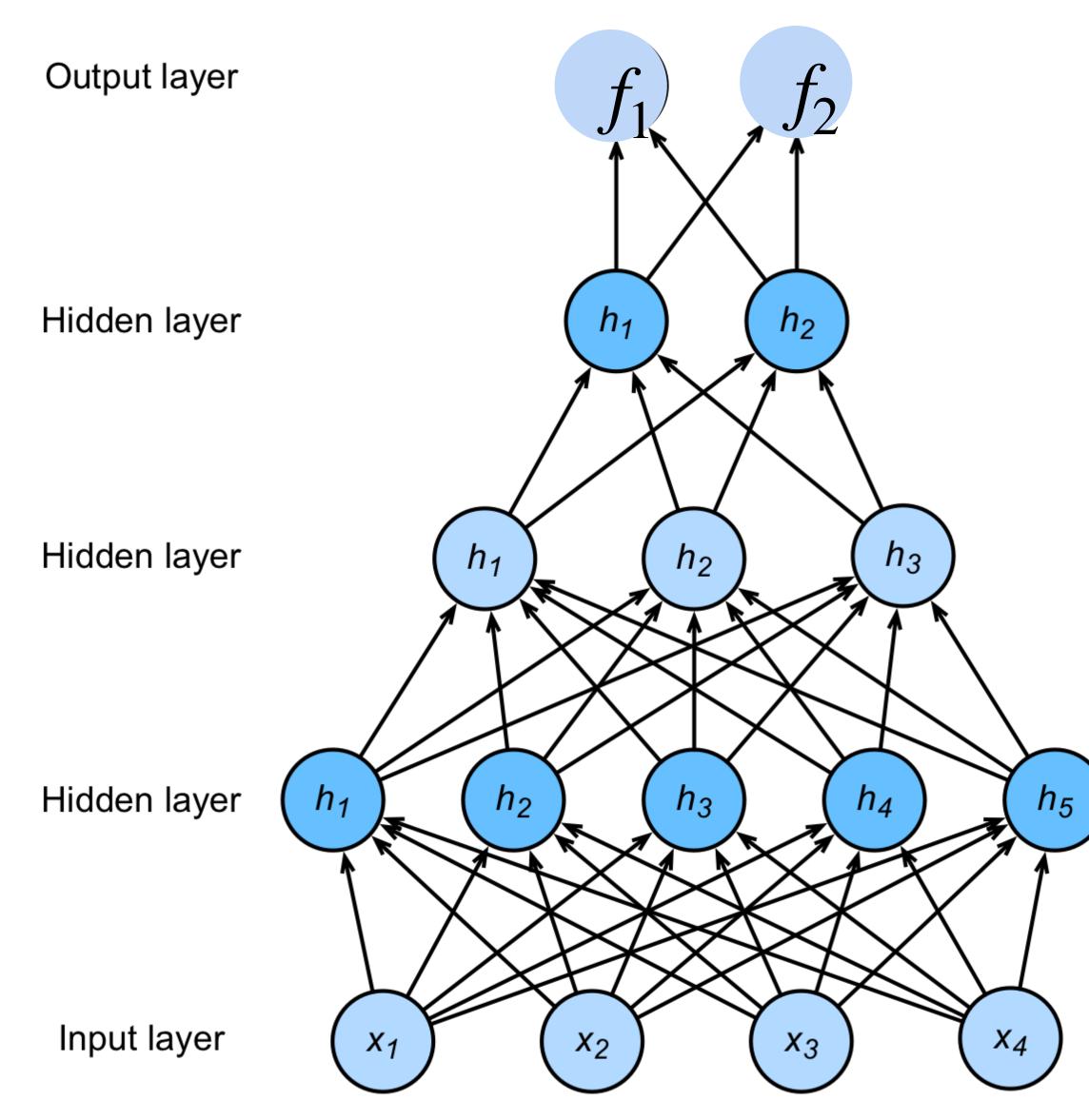
Multi-class classification



Turns outputs f into k probabilities (sum up to 1 across k classes)

$p(y | \mathbf{x}) = \text{softmax}(\mathbf{f})$ $\exp f_y(x)$ $\sum_{i=1}^{k} \exp f_i(x)$

Deep neural networks (DNNs)



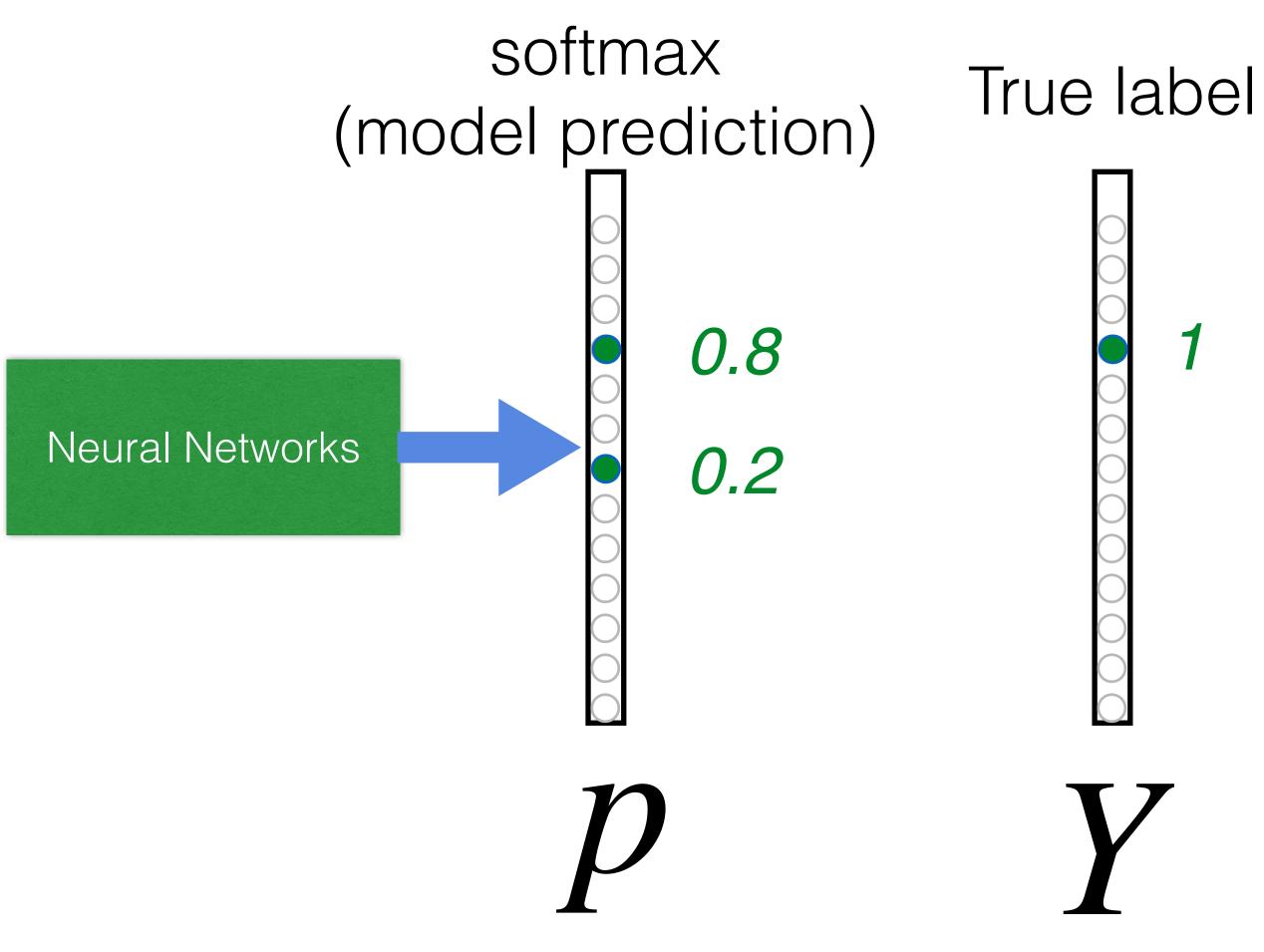
$\begin{aligned} \mathbf{h}_1 &= \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) \\ \mathbf{h}_2 &= \sigma(\mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2) \\ \mathbf{h}_3 &= \sigma(\mathbf{W}_3 \mathbf{h}_2 + \mathbf{b}_3) \\ \mathbf{f} &= \mathbf{W}_4 \mathbf{h}_3 + \mathbf{b}_4 \\ \mathbf{y} &= \mathrm{softmax}(\mathbf{f}) \end{aligned}$

NNs are composition of nonlinear functions

How to train a neural network? **Loss function:** $\frac{1}{|D|} \sum_{i} \ell(\mathbf{x}_{i}, y_{i})$ Hidden layer **Per-sample loss:** m neurons Input K $\ell(\mathbf{x}, y) = \sum_{j=1}^{\infty} -y_j \log p_j$ *j*=1 Also known as cross-entropy loss or softmax loss

Output

Cross-Entropy Loss



$L_{CE} = \sum_{j=1}^{\infty} -y_j \log(p_j)$ $= -\log(0.8)$

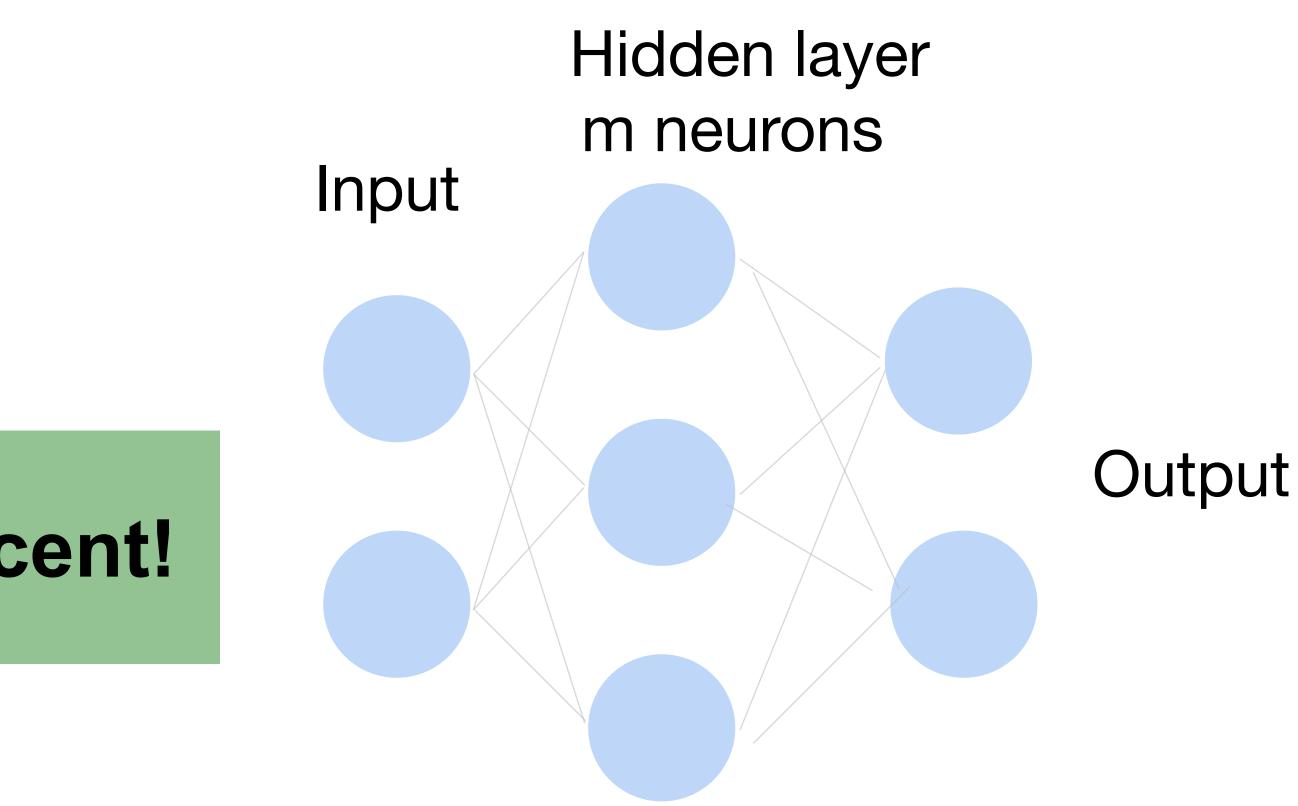
Goal: push **p** and **Y** to be identical

How to train a neural network?

Update the weights W to minimize the loss function

$$L = \frac{1}{|D|} \sum_{i} \ell(\mathbf{x}_i, y_i)$$

Use (stochastic) gradient descent!

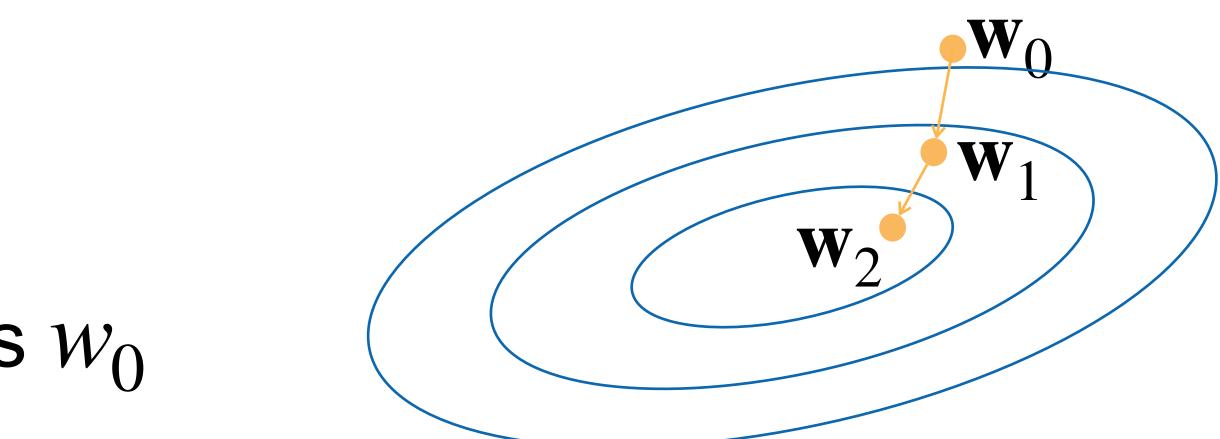


Gradient Descent

- Choose a learning rate $\alpha > 0$
- Initialize the model parameters w_0
- For t =1,2,...

• Update parameters: D can ∂L $\mathbf{w}_t = \mathbf{w}_{t-1} - \alpha \frac{\partial \mathbf{w}_{t-1}}{\partial \mathbf{w}_{t-1}}$ (\mathbf{X}_i, y_i) $= \mathbf{W}_{t-1}$ x∈D

Repeat until converges



be very large. Expensive

Minibatch Stochastic Gradient Descent

- Choose a learning rate $\alpha > 0$
- Initialize the model parameters W_0
- For t =1,2,...
 - Randomly sample a subset (mini-batch) $B \subset D$ Update parameters:

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \alpha_{\parallel 1}$$

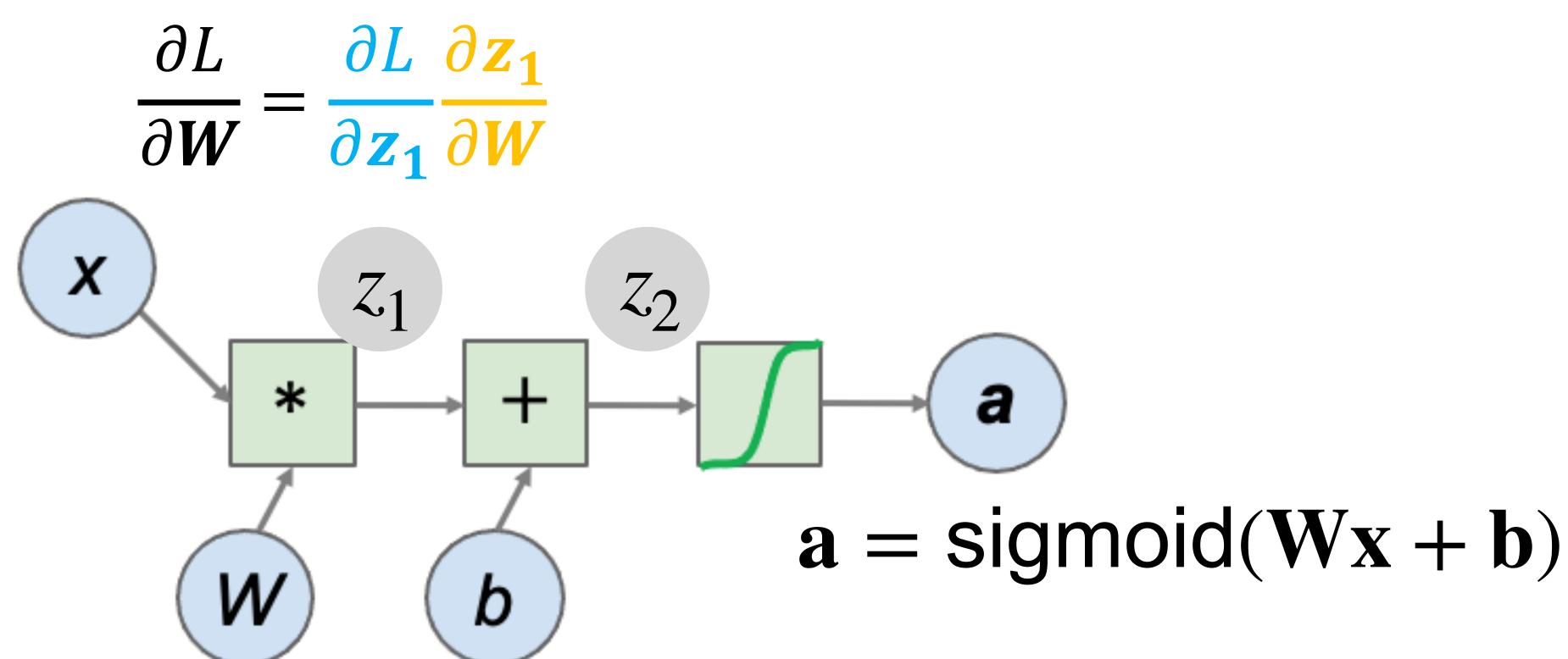
• Repeat

 $\frac{1}{B|} \sum_{\mathbf{x} \in B} \frac{\partial \ell(\mathbf{x}_i, y_i)}{\partial \mathbf{w}_{t-1}}$

Calculate gradient: backpropagation with chain rule

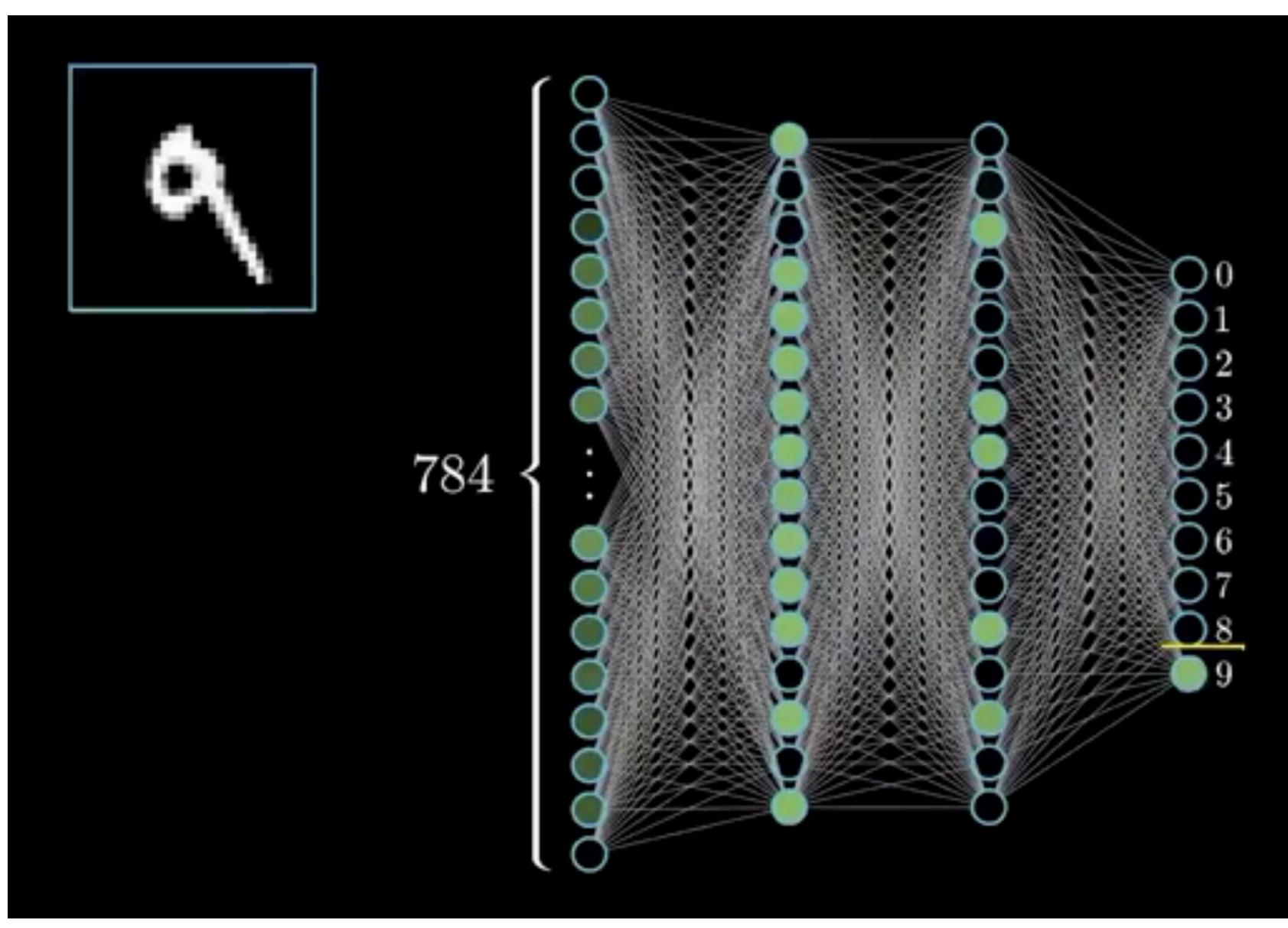
- Define a loss function L
- Gradient to a variable =

gradient on the top x gradient from the current operation

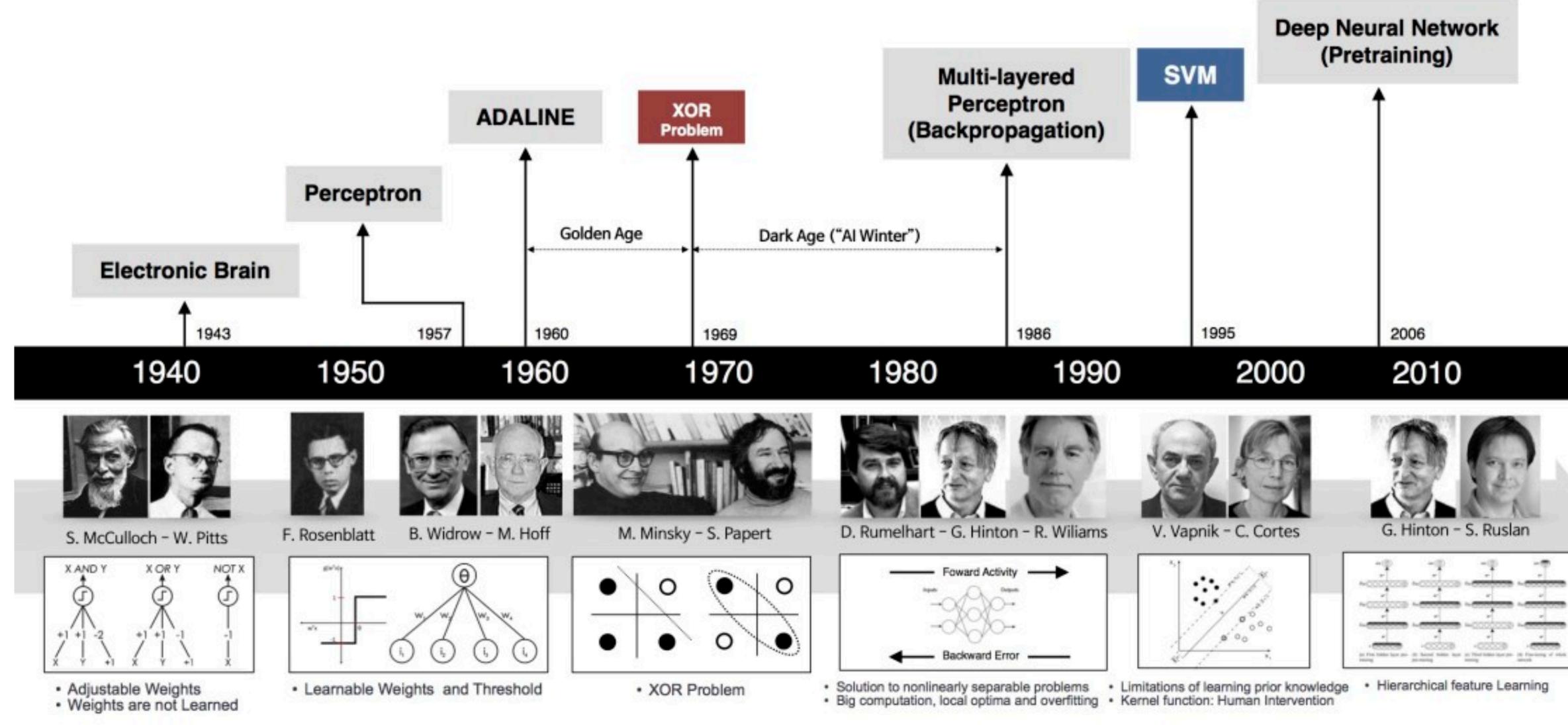


Using SGD in PyTorch (code demo)

Classify MNIST handwritten digits (HW6)



Brief history of neural networks



How to classify Cats vs. dogs?

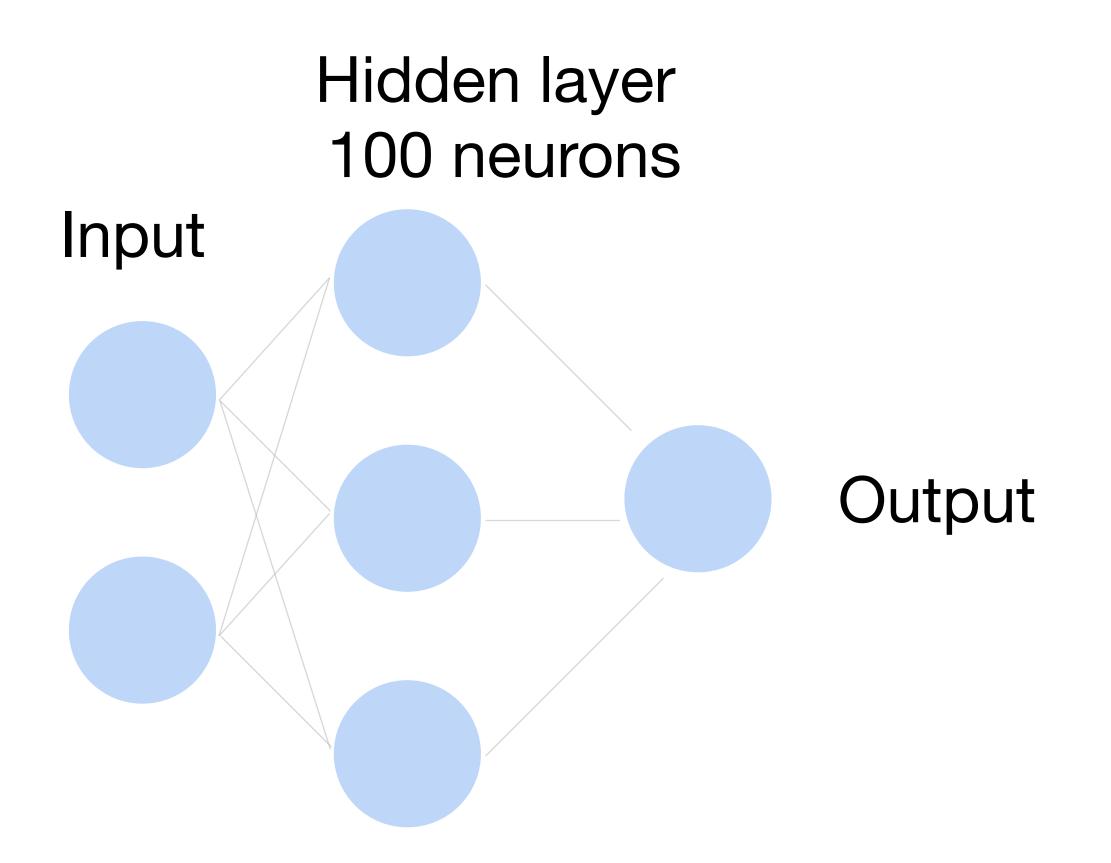
Dual 1210P wide-angle and

telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?



~ 36M elements x 100 = ~3.6B parameters!

Convolutions come to rescue!

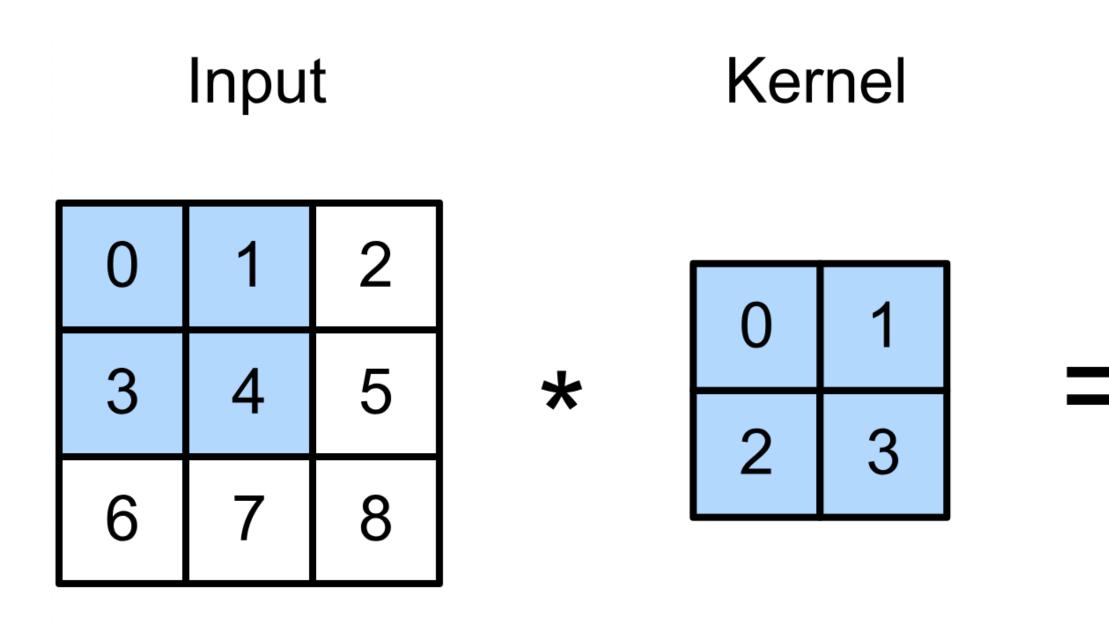
Why Convolution?

1. Translation Invariance

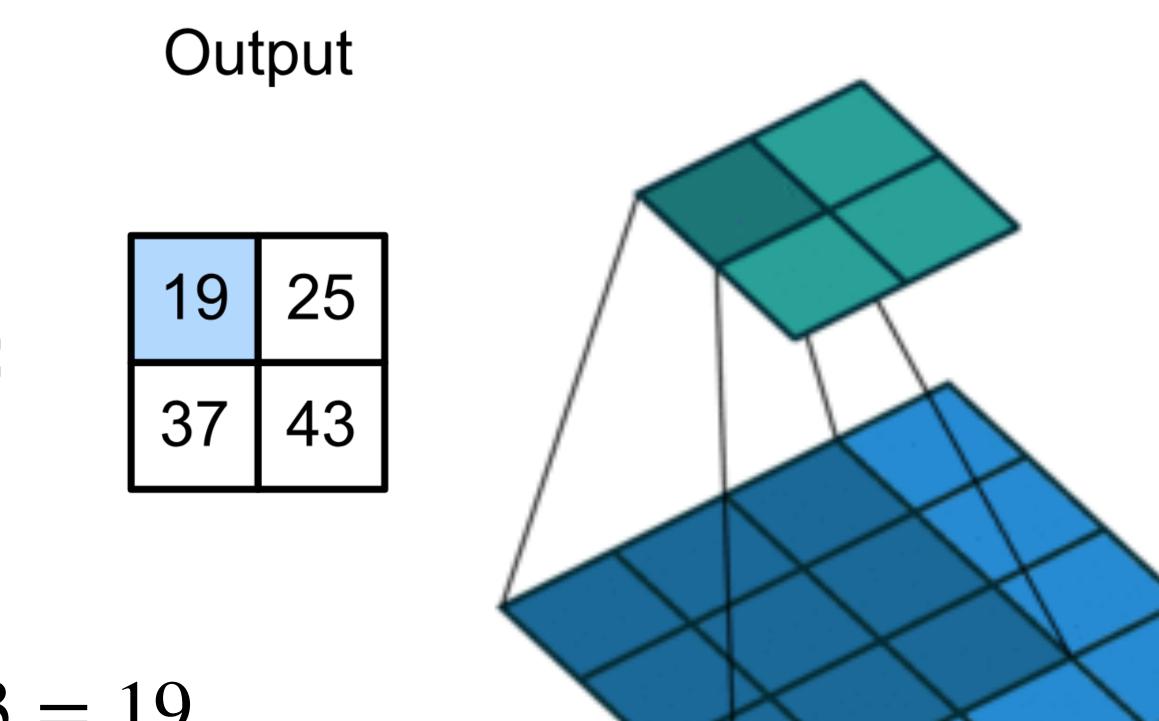
2. Locality

3. Less parameters

2-D Convolution

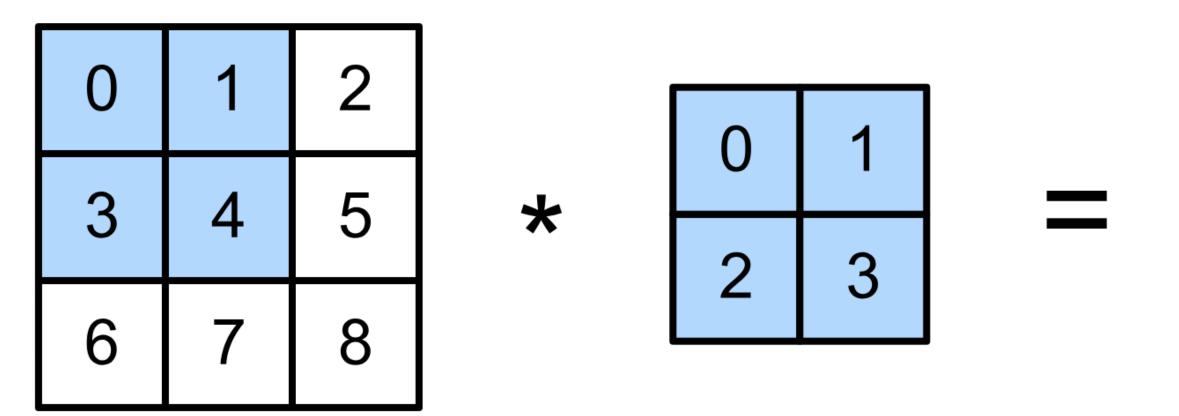


 $0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$, $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$, $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37$, $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$



(vdumoulin@ Github)

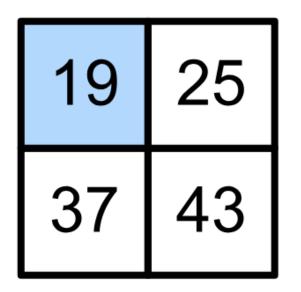
2-D Convolution Layer



• $\mathbf{X}: n_h \times n_w$ input matrix

- W: $k_h \times k_w$ kernel matrix
- b: scalar bias
- **Y** : $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix

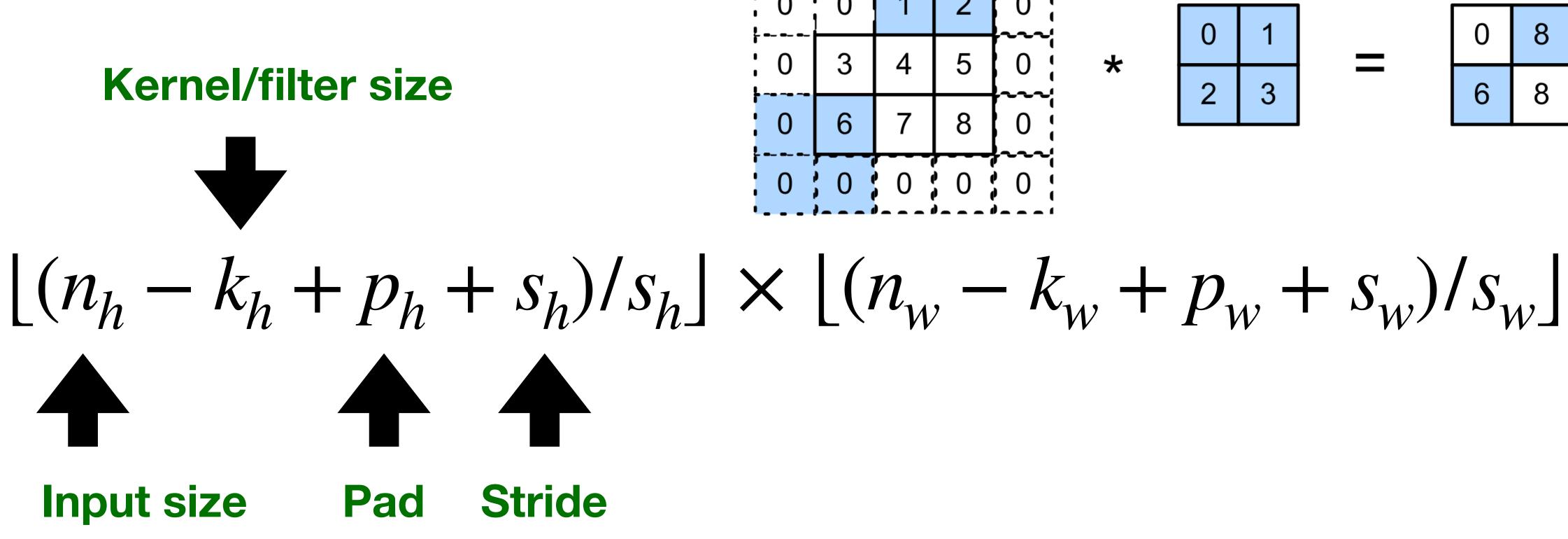
• W and b are learnable parameters

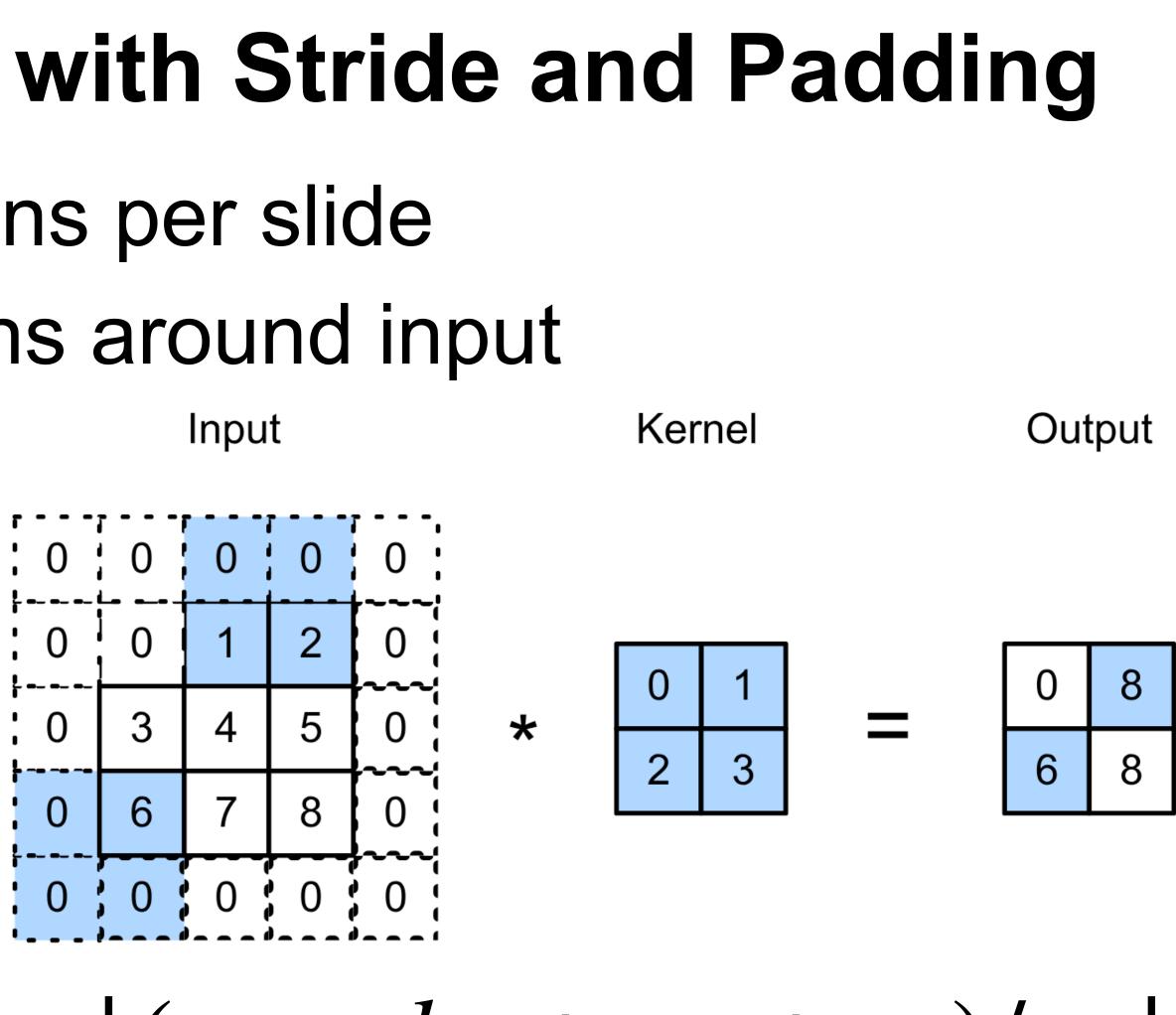


$\mathbf{Y} = \mathbf{X} \star \mathbf{W} + b$

2-D Convolution Layer with Stride and Padding

- Stride is the #rows/#columns per slide
- Padding adds rows/columns around input
- Output shape



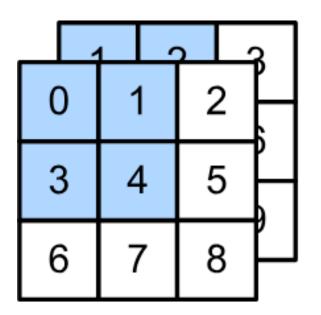


Multiple Input Channels

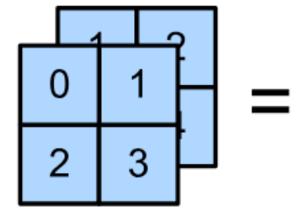
- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

Input

Kernel



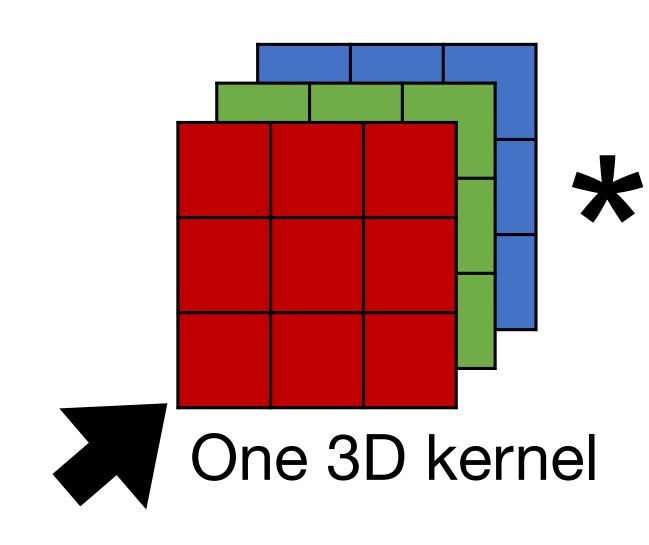
*



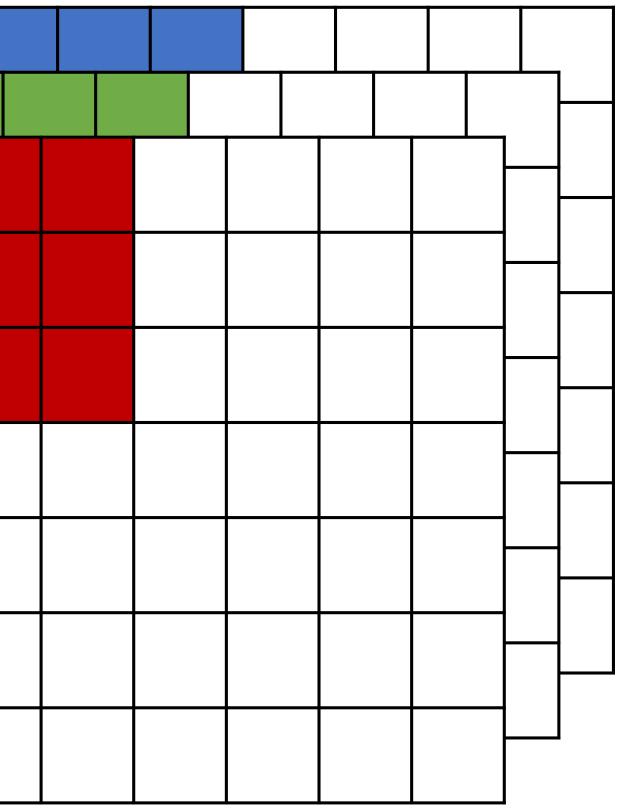
Have a kernel for each channel, and then sum results over

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- channels

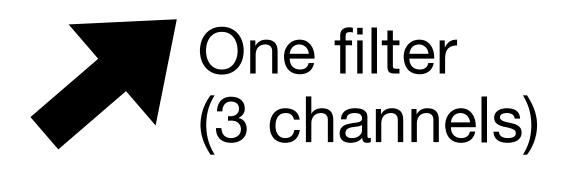


Have a 2D kernel for each channel, and then sum results over



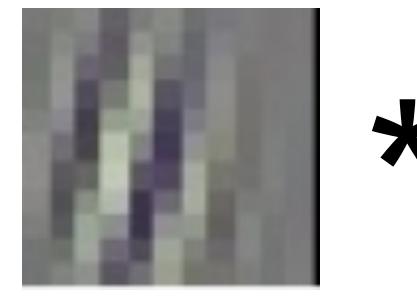
Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- output channel (due to summation over channels)



Also call each 3D kernel a "filter", which produce only one

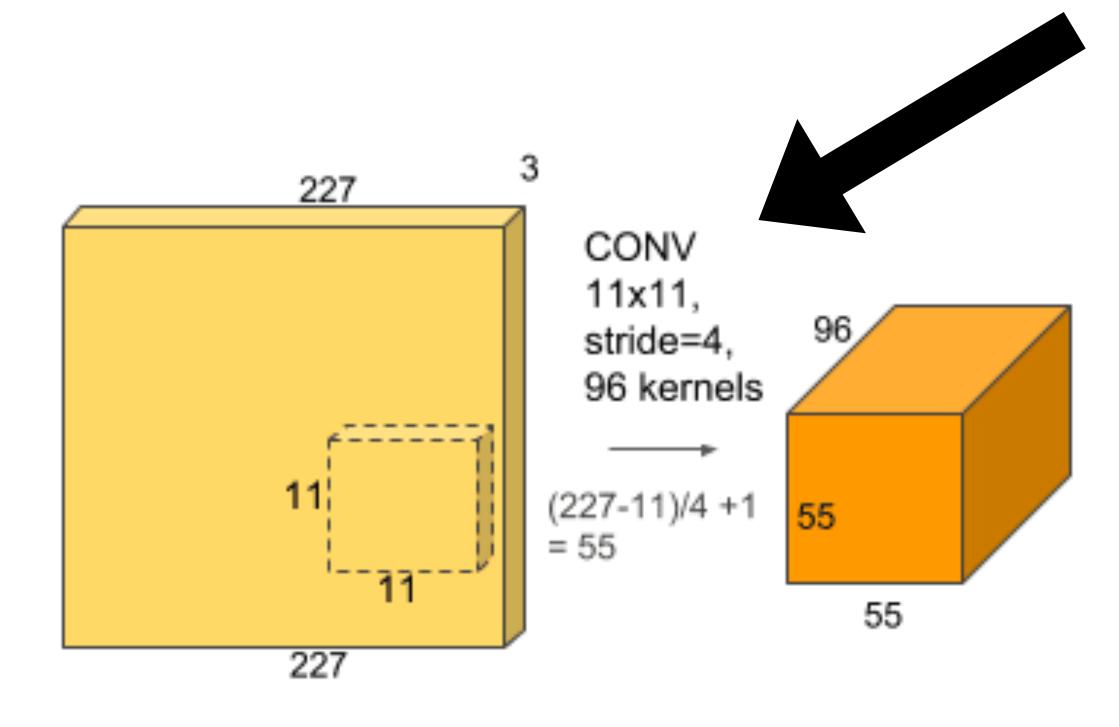
Multiple filters (in one layer) • Apply multiple filters on the input Each filter may learn different features about the input Each filter (3D kernel) produces one output channel

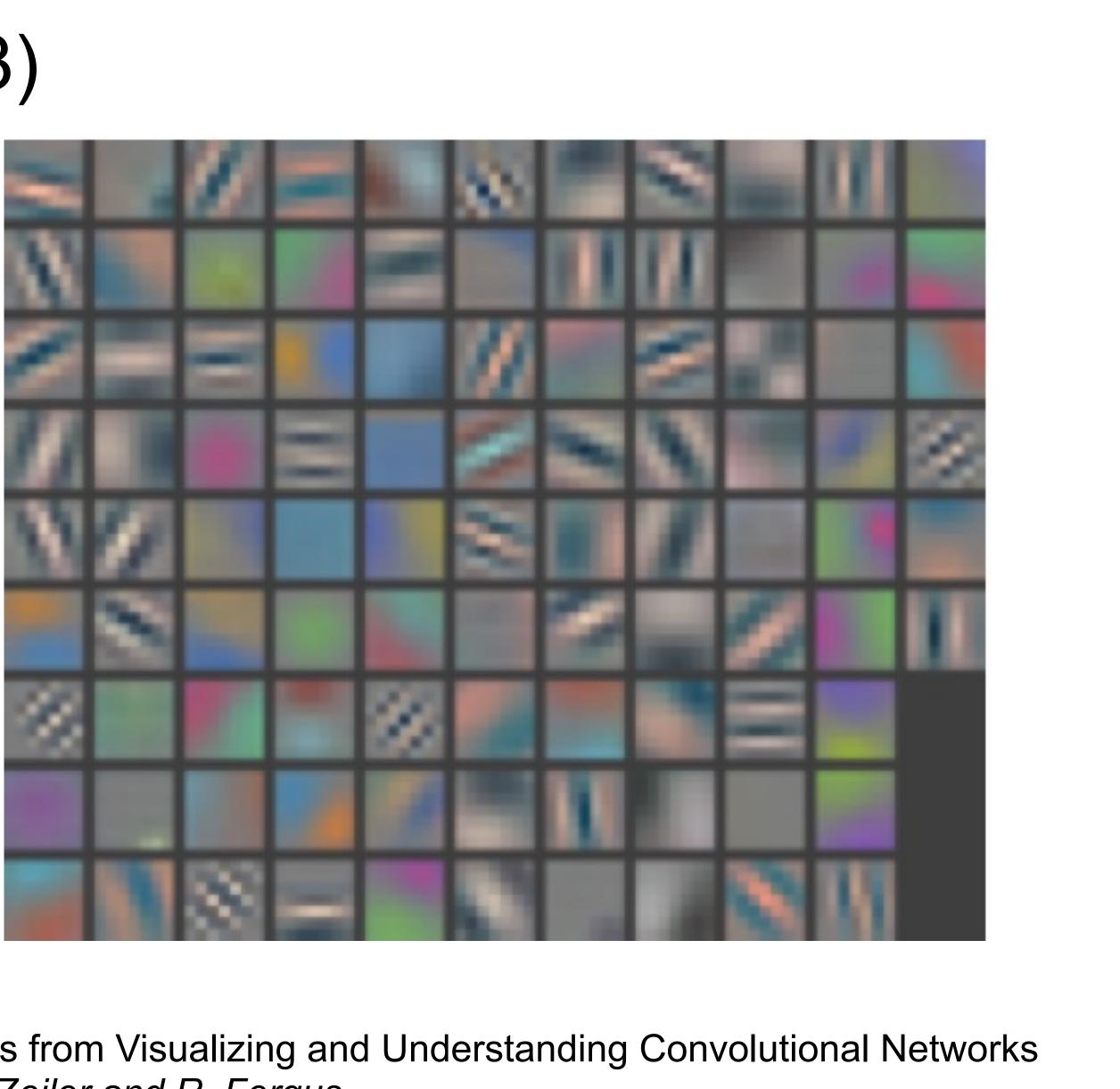


RGB (3 input channels)

Conv1 Filters in AlexNet

- 96 filters (each of size 11x11x3)
- Gabor filters





Figures from Visualizing and Understanding Convolutional Networks by M. Zeiler and R. Fergus

Multiple Output Channels

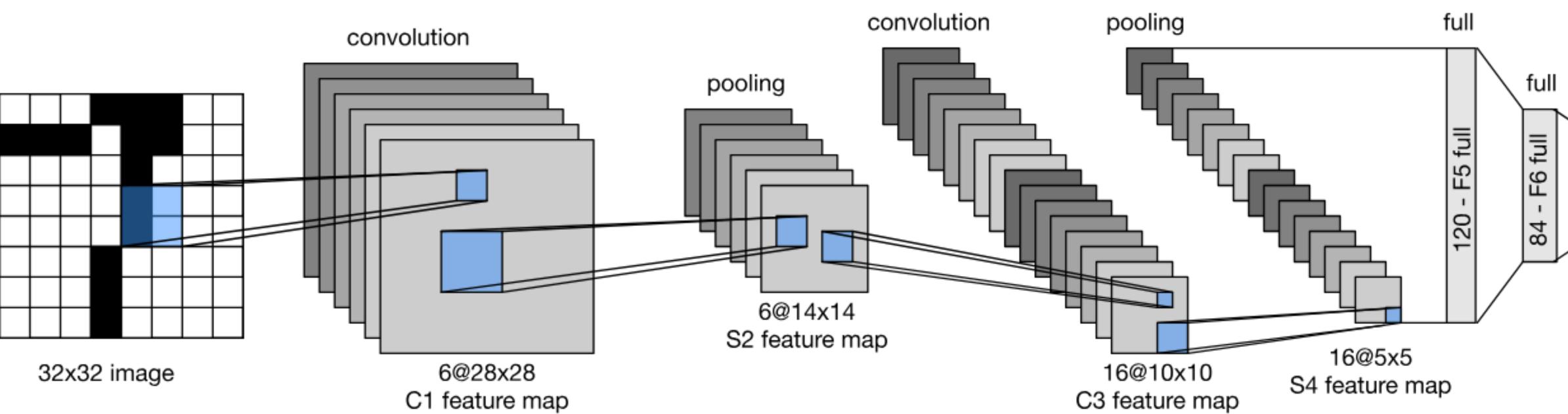
- The # of output channels = # of filters
- Input $\mathbf{X}: c_i \times n_h \times n_w$
- Kernel W : $c_o \times c_i \times k_h \times k_w$
- Output $\mathbf{Y}: \boldsymbol{c}_o \times \boldsymbol{m}_h \times \boldsymbol{m}_w$

IS # of filter

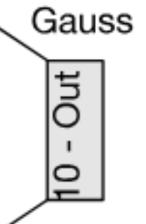
> $Y_{i,:,:} = X \star W_{i,:,:,:}$ for $i = 1, ..., c_o$

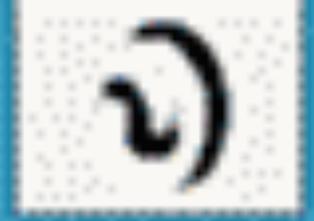
Convolutional Neural Networks

LeNet Architecture



gluon-cv.mxnet.io





LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998 Gradient-based learning applied to document recognition

LeNet in Pytorch (HW7)

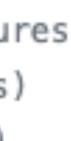
Connect theory and practice

```
def ___init__(self):
super(LeNet5, self).__init__()
# Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)
# Max-pooling
self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
# Convolution
# Max-pooling
self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
# Fully connected layer
self.fc2 = torch.nn.Linear(120, 84)
self.fc3 = torch.nn.Linear(84, 10)
```

self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)

self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)

self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (col # convert matrix with 120 features to a matrix of 84 features (columns) # convert matrix with 84 features to a matrix of 10 features (columns)

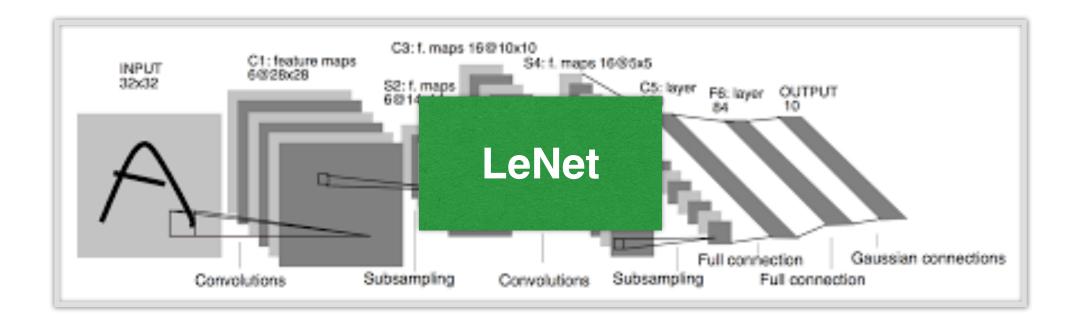


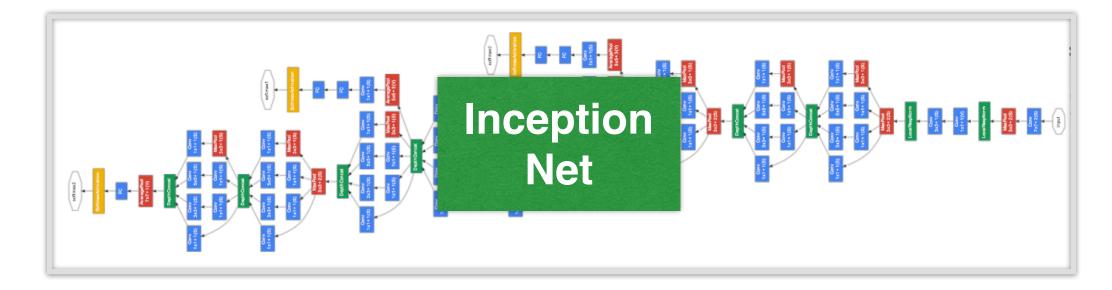
Quiz break

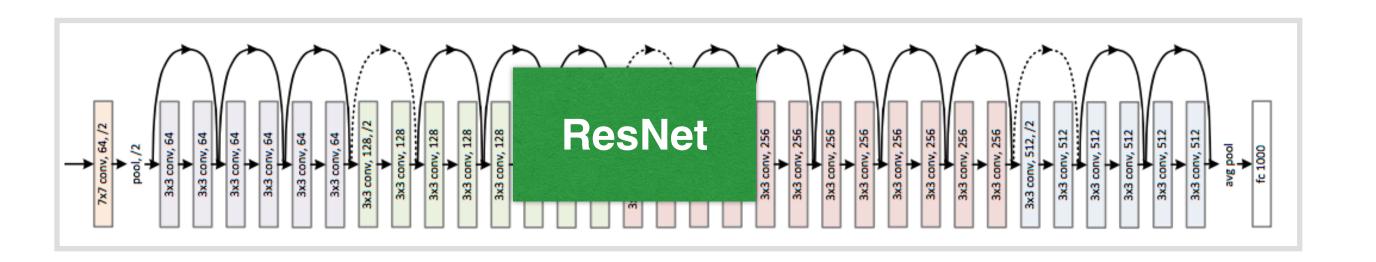
Which one of the following is NOT true?

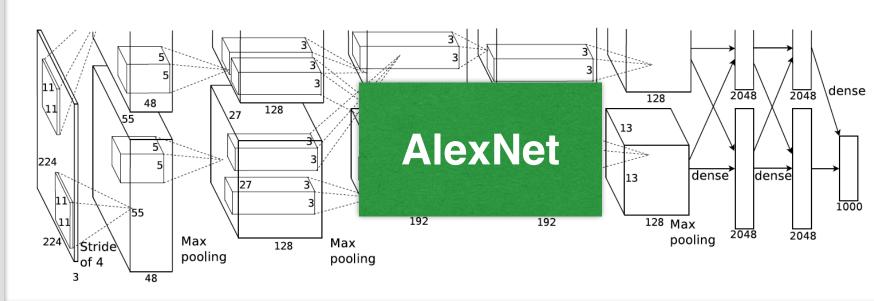
- A. LeNet has two convolutional layers
- B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB input C. Pooling is performed right after convolution
- D. Pooling layer does not have learnable parameters

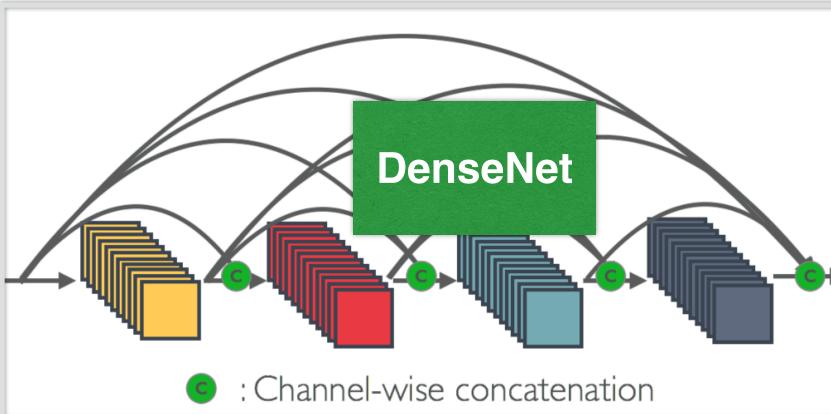
Evolution of neural net architectures



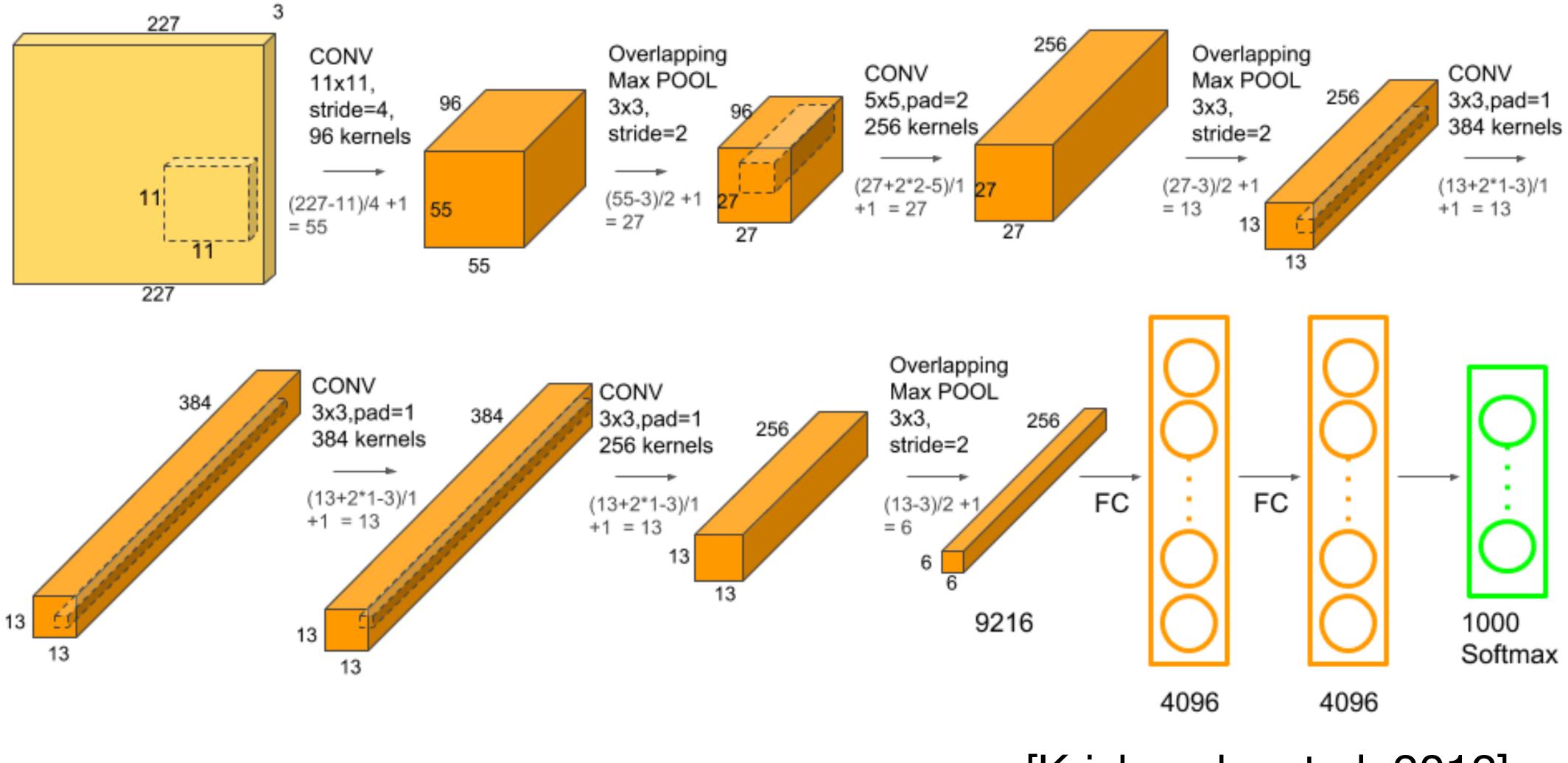






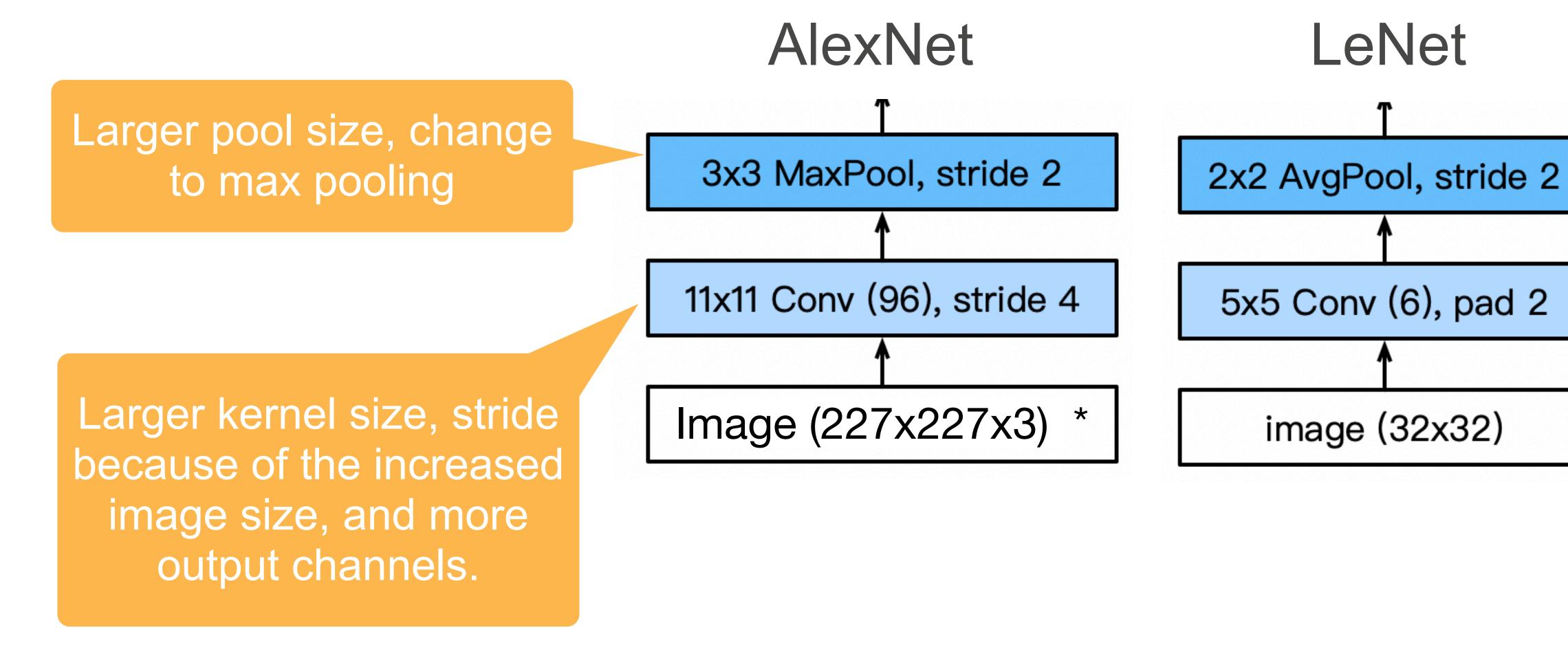


Deng et al. 2009



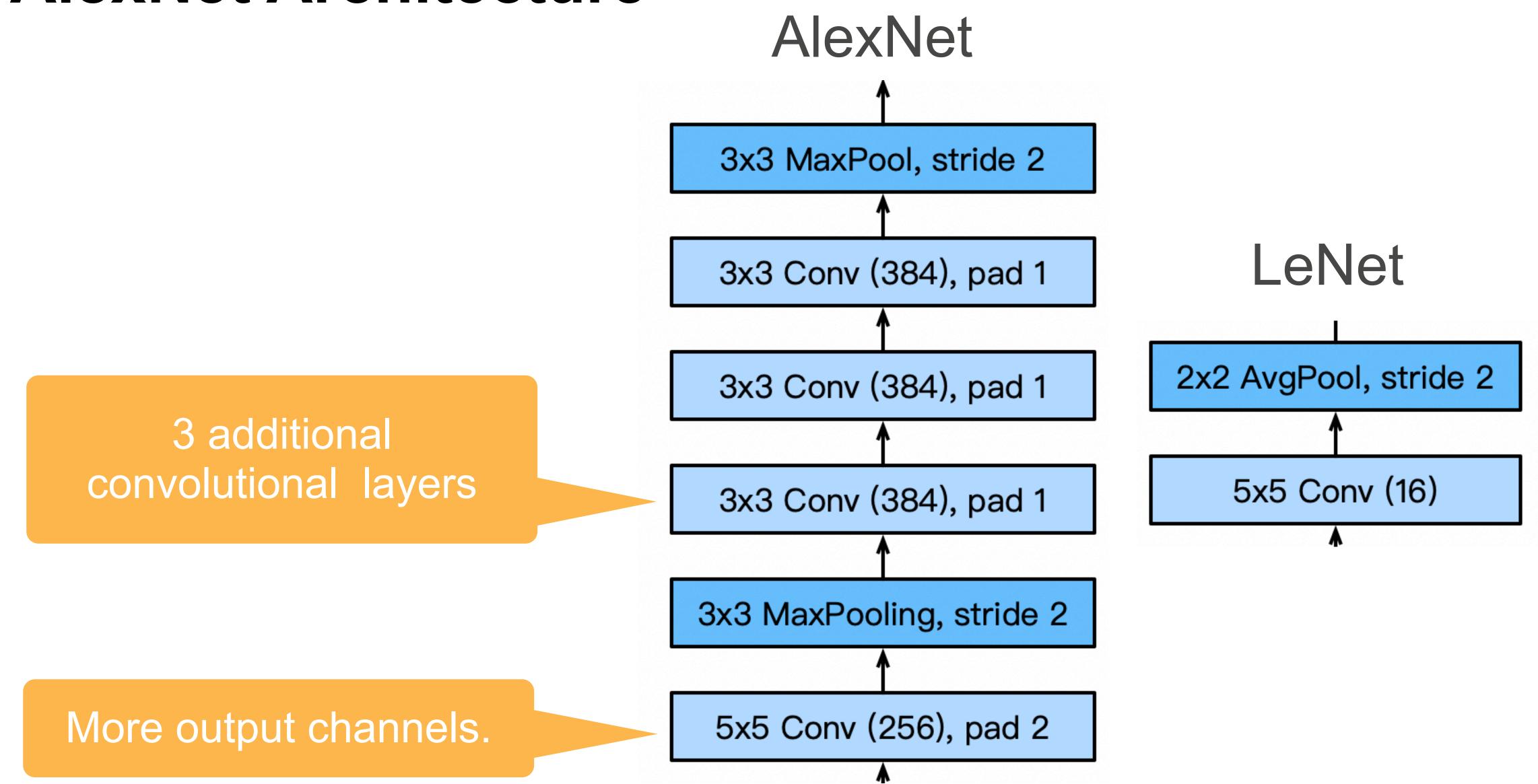
[Krizhevsky et al. 2012]

AlexNet vs LeNet Architecture

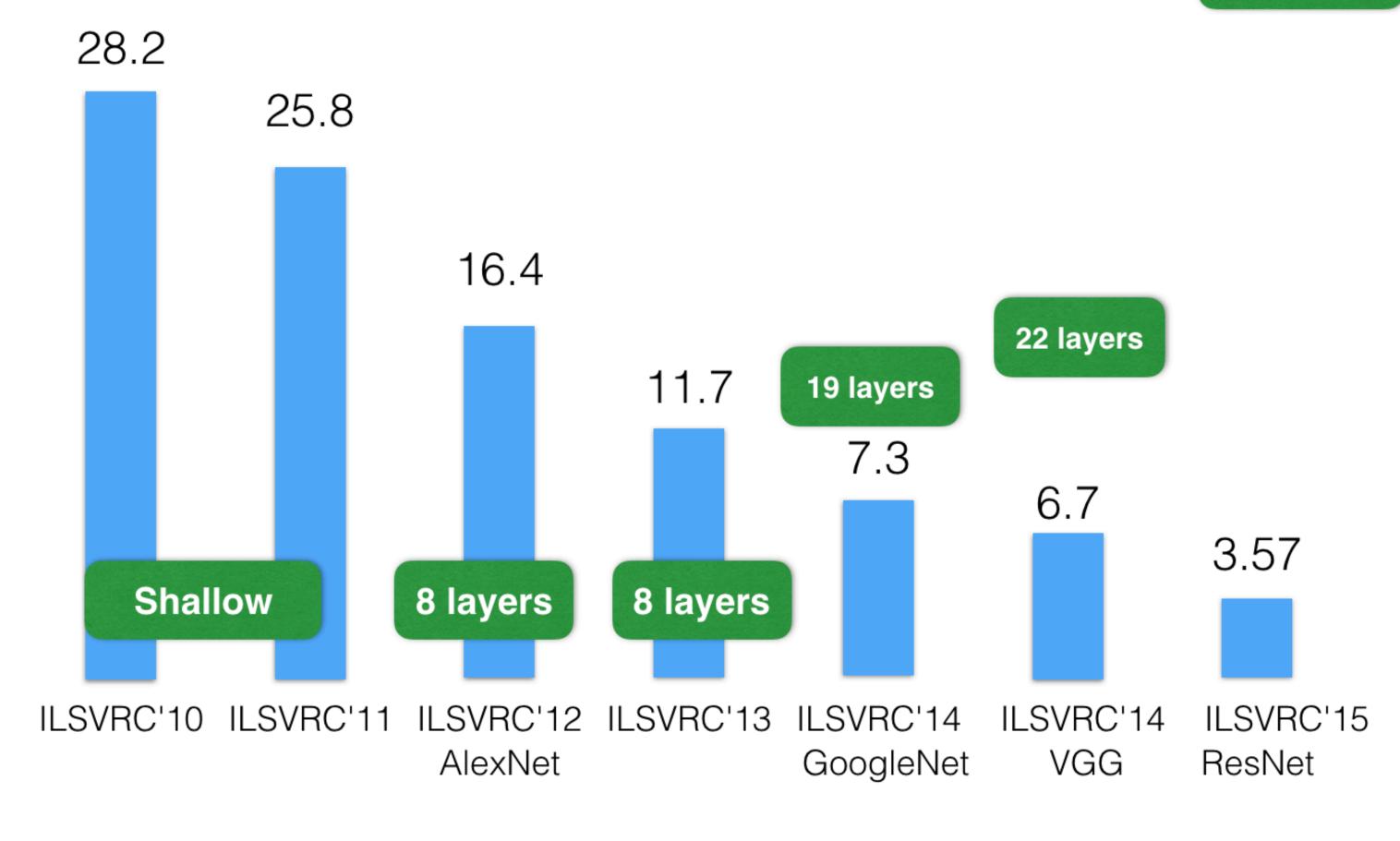


*Note that the original paper used 224x224x3, which was incorrect

AlexNet Architecture



ResNet: Going deeper in depth



ImageNet Top-5 error%

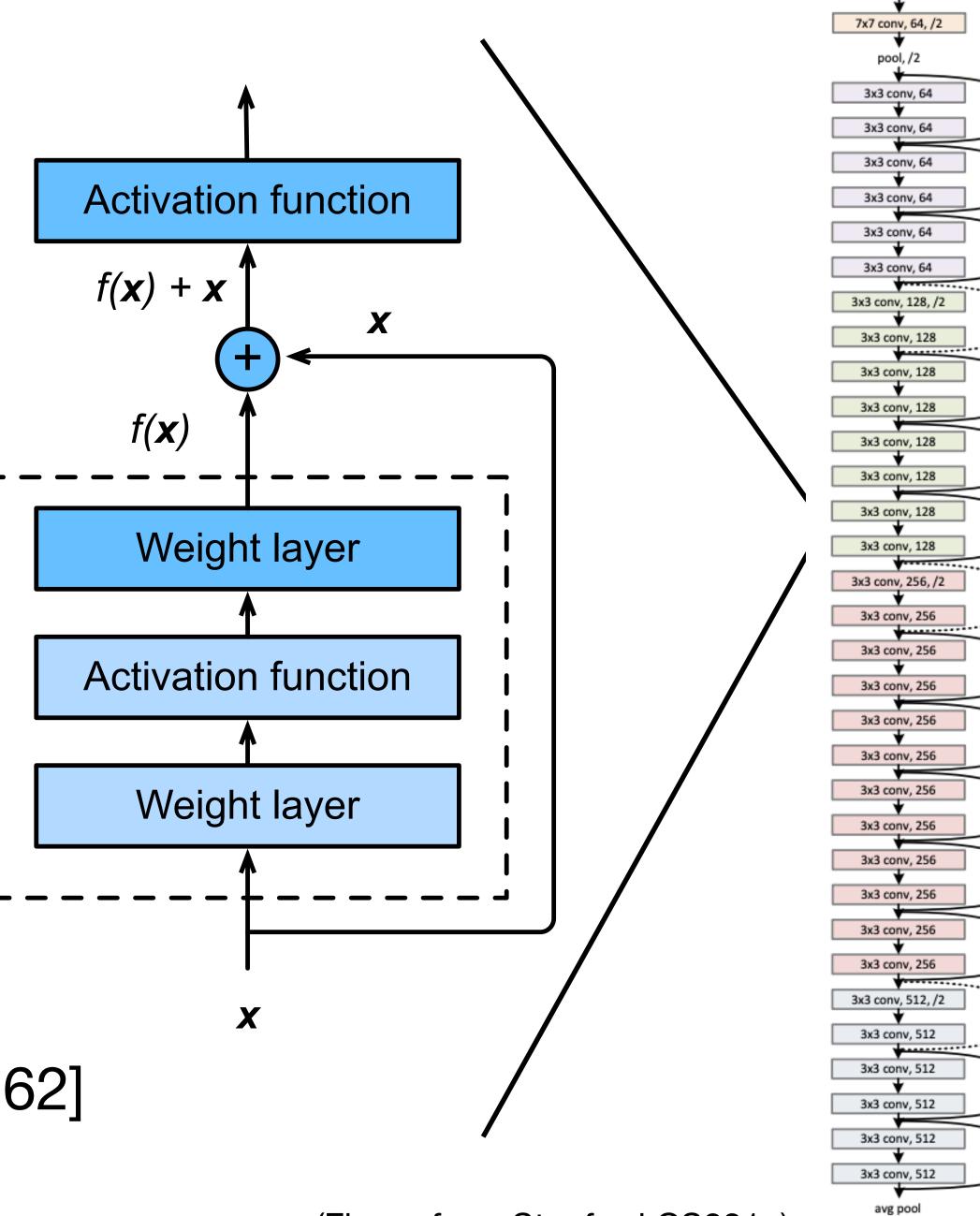
152 layers

[He et al. 2015]

Full ResNet Architecture [He et al. 2015]

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride of 2 (/2 in each dimension)

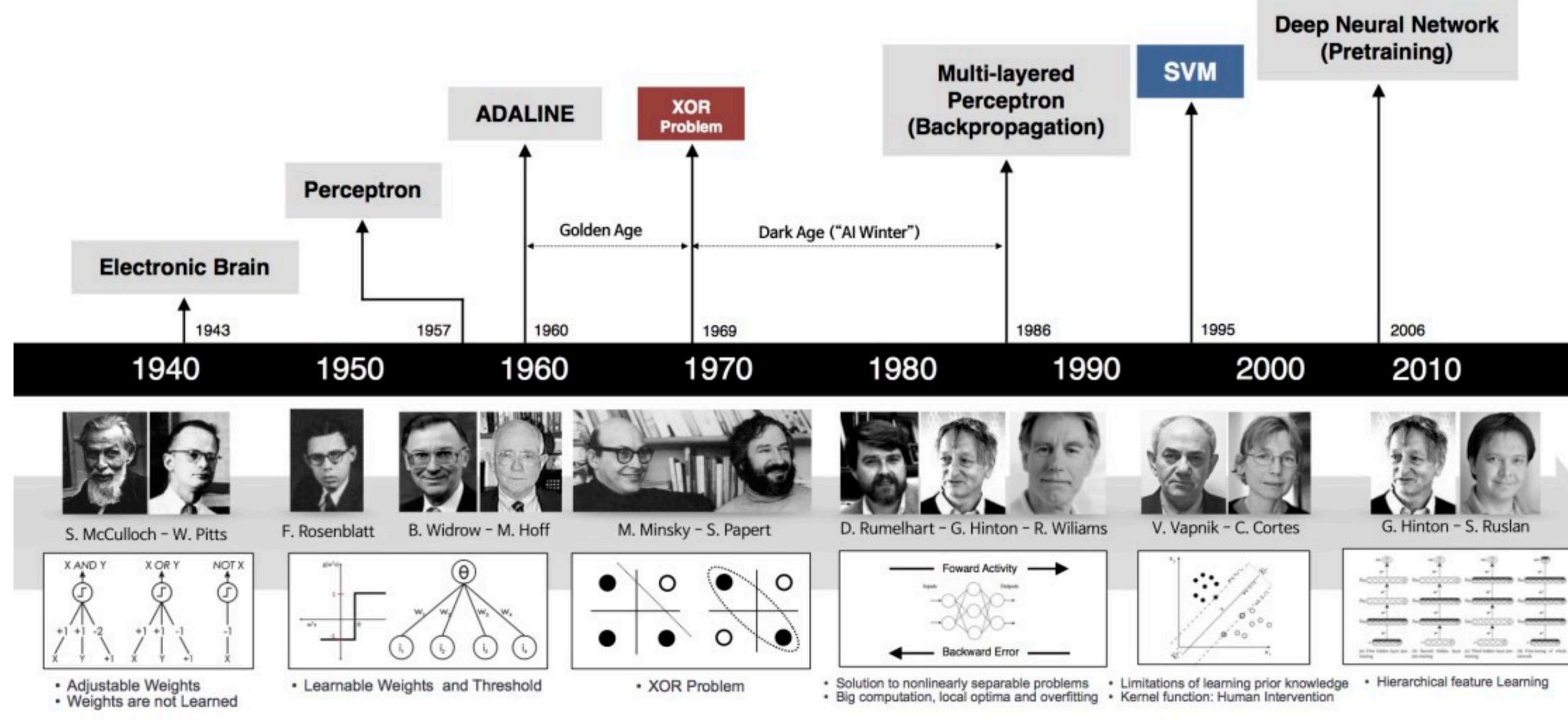
[More advanced topics covered in CS762]



(Figure from Stanford CS231n)

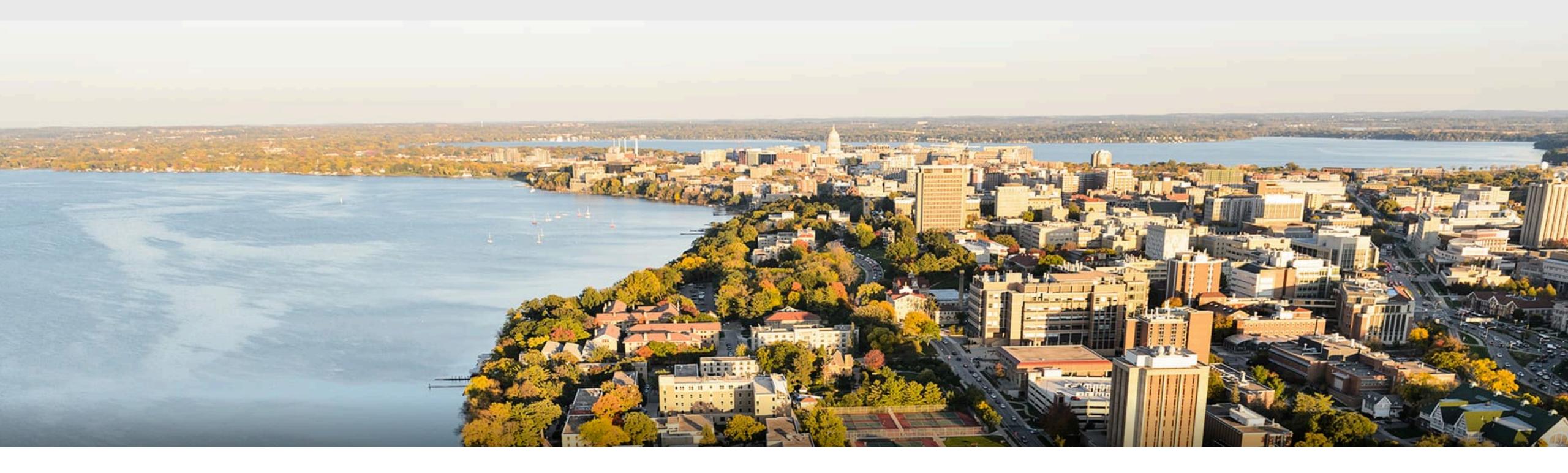
fc 1000

Brief history of neural networks



What we've learned today...

- Modeling a single neuron
 - Linear perceptron
 - Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks
 - Loss function (cross entropy)
 - Backpropagation and SGD
- Convolutional neural networks ullet
 - Convolution, pooling, stride, padding
 - Basic architectures (LeNet etc.)
 - More advanced architectures (AlexNet, ResNet etc)



Thank you!

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li: <u>https://courses.d2l.ai/berkeley-stat-157/index.html</u>