

CS 540 Introduction to Artificial Intelligence Search II: Informed Search

Yudong Chen
University of Wisconsin-Madison

Nov 16, 2021

Announcements

- HW8 released today, due next Tuesday
- Annotated slides
- Grading Info
- Class roadmap

Today: informed search Thursday: advanced search. Next week = Games

Outline

- Uninformed vs Informed Search
- Review of uninformed strategies, adding heuristics
- A* Search
- Heuristic properties, stopping rules, analysis
- Extensions: Beyond A*
- Iterative deepening, beam search

Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue
- Properties:
- Complete
- Optimal (if edge cost 1)
- Time $O\left(b^{d}\right) \quad$ Depth of Goal
- Space $O\left(b^{d}\right)$

Branching Factor
9
10
11
12

Uniform Cost Search

Recall: expand least-cost node first

- Generalization of BFS
- Data structure: priority queue
- Properties:
- Complete
- Optimal (if weight lower bounded by ε)
- Time $O\left(b^{c^{*} / \varepsilon}\right)$
- Space $O\left(b^{C^{*} / \varepsilon}\right)$

Depth-First Search

Recall: expand deepest node first

- Data structure: stack
- Properties:
- Incomplete (stuck in infinite tree...)
- Suboptimal

Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
- Complete

- Optimal (if edge cost 1)
- Time O($\left.b^{d}\right)$
- Space O(bd)

A good option!

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to node s
- Successors.

Informed search. Know:

- All uninformed search properties, plus
- Heuristic h(s) from s to goal

Informed Search

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal hope: $h(s) \approx$ true cost from $\begin{gathered}s \text { to goal. }\end{gathered}$

- Use side information to speed up search.

Using the Heuristic

Back to uniform-cost search

- We had the priority queue
- Expand the node with the smallest $g(s)$
- $g(s)$ "first-half-cost"

- Now let's use the heuristic ("second-half-cost")
- Several possible approaches: let's see what works

Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand node with smallest $h(s)$
- This isn't a good idea. Why?

- Not optimal! Get $\mathrm{A} \rightarrow \mathrm{C} \rightarrow$ G. Want: $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$

Attempt 2: A Search

$g(s)+h(s)$
B $1+1000$
Next approach: use both $g(s)+h(s)$ alone

- Specifically, expand node with smallest $g(s)+h(s)$
- Again, use a priority queue
- Called "A" search

- Still not optimal! (Does work for former example).

Attempt 3: A* Search

 $h(1)=5$Same idea, use $g(s)+h(s)$, with one requirement

- Demand that $h(s) \leq h^{*}(s)$
- If heuristic has this property, "admissible"
- Optimistic! Never over-estimates
- Still need $h(s) \geq 0$
- Negative heuristics can lead to strange behavior
- This is \mathbf{A}^{*} search

Attempt 3: A* Search

 0 - fringe color: $h(s)$Origins: robots and planning

Shakey the Robot, 1960's

Credit: Wiki

Animation: finding a path around obstacle

Credit: Wiki

Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: $\mathbf{8}$ Game

	Example	1	
5			
State	2	6	3
	7	4	8

Goal			
	1	2	3
	4	5	6
7	8		

- One useful approach: relax constraints
$-h(s)=$ number of tiles in wrong position
$h(s)=5$.
- allows tiles to fly to destination in a single step

Break \& Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic

Break \& Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic

Break \& Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic No: riding your bike take longer.
- B. Not an admissible heuristic

Break \& Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) $h(s)=h^{*}(s)$
\times (ii) $h(s)=\max \left(2, h^{*}(s)\right)$
(iii) $\quad h(s)=\min \left(2, h^{*}(s)\right) \leqslant h^{*}(s)$
X (iv) $h(s)=h^{*}(s)-2$ max be negative
(v) $h(s)=\operatorname{sqrt}\left(h^{*}(s)\right)$

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)

Break \& Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) $h(s)=h^{*}(s)$
(ii) $\quad h(s)=\max \left(2, h^{*}(s)\right)$
(iii) $\quad h(s)=\min \left(2, h^{*}(s)\right)$
(iv) $h(s)=h^{*}(s)-2$
(v) $h(s)=\operatorname{sqrt}\left(h^{*}(s)\right)$

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)

Break \& Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) $h(s)=h^{*}(s)$
(ii) $\quad h(s)=\max \left(2, h^{*}(s)\right) \quad$ No: $h(s)$ might be too big
(iii) $\quad h(s)=\min \left(2, h^{*}(s)\right)$
(iv) $h(s)=h^{*}(s)-2$
(v) $h(s)=\operatorname{sqrt}\left(h^{*}(s)\right)$

No: $h(s)$ might be negative

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)

Heuristic Function Tradeoffs

Dominance: h_{2} dominates h_{1} if for all states s,

$$
h_{1}(s) \leq h_{2}(s) \leq h^{*}(s)
$$

- Idea: we want to be as close to h^{*} as possible
- But not over!
- Tradeoff: being very close might require a very complex heuristic, expensive computation
- Might be better off with cheaper heuristic \& expand more nodes.

Heuristic Function Tradeoffs

- Example: $\mathbf{8}$ Game
h_{2} dominates h_{c}

Goal
State

1	2	3
4	5	6
7	8	

- Previous heuristic: $h_{1}(s)=$ number of tiles in wrong position
- Better heuristic?

$$
h_{2}(s)=\sum_{\text {tile }=\text { wrong. }} \text { Manhattan distance (tile, destination) }
$$

A* Termination

$g(s)+h(s)$

When should A* stop?

- One idea: as soon as we reach goal state?

- h admissible, but note that we get $A \rightarrow B \rightarrow G$ (cost 1000)!

A* Termination

When should A* stop?

- Rule: terminate when a goal is popped from queue.

- Note: taking $h=0$ reduces to uniform cost search rule.

A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

- Put D back into priority queue, smaller g+h

A* Full Algorithm

1. Put the start node S on the priority queue, called OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which $\mathrm{f}(\mathrm{n})$ is minimum (note that $f(n)=g(n)+h(n))$
4. If n is a goal node, exit (trace back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n ' of n
6. If n^{\prime} is not already on OPEN or CLOSED estimate $h\left(n^{\prime}\right), g\left(n^{\prime}\right)=g(n)+c\left(n, n^{\prime}\right), f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)$, and place it on OPEN.
7. If n ' is already on OPEN or CLOSED, then check if $g(n ')$ is lower for the new version of $n '$. If so, then:
8. Redirect pointers backward from n^{\prime} along path yielding lower $\mathrm{g}\left(\mathrm{n}^{\prime}\right)$.
9. Put n ' on OPEN.
10. If $\mathrm{g}\left(\mathrm{n}^{\prime}\right)$ is not lower for the new version, do nothing.
11. Goto 2.

A* Analysis

Some properties:

- Terminates!
- A* can use lots of memory: O(\# states).
- Will run out on large problems.
- Next, we will consider some alternatives to deal with this.

Break \& Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h_{1} is the number of tiles in wrong position. h_{2} is the $I_{1} /$ Manhattan distance between the tiles and the goal location. How do h_{1} and h_{2} relate?

- A. \boldsymbol{h}_{2} dominates \boldsymbol{h}_{1}
- B. h_{1} dominates h_{2}
- C. Neither dominates the other

Break \& Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h_{1} is the number of tiles in wrong position. h_{2} is the $I_{1} /$ Manhattan distance between the tiles and the goal location. How do h_{1} and h_{2} relate?

- A. h_{2} dominates h_{1}
- B. h_{1} dominates h_{2}
- C. Neither dominates the other

Break \& Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h_{1} is the number of tiles in wrong position. h_{2} is the $I_{1} /$ Manhattan distance between the tiles and the goal location. How do h_{1} and h_{2} relate?

- A. h_{2} dominates h_{1}
- B. h_{1} dominates h_{2} (No: h_{1} is a distance where each entry is at most 1, \boldsymbol{h}_{2} can be greater)
- C. Neither dominates the other

Break \& Quiz

Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A* after the initial state I?

$$
g(s)+h(s)
$$

- A. A
- B. B
- C. C

Break \& Quiz

Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A* after the initial state I?

IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don't expand any node with $g(s)+h(s)>k$,
- Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on
- Complete + optimal, might be costly time-wise
- Revisit many nodes
- Lower memory use than A*

IDA*: Properties

How many restarts do we expect?

- With integer costs, optimal solution C^{*}, at most C^{*}

What about non-integer costs?

- Initial threshold k. Use the same rule for non-expansion
- Set new k to be the $\min g(s)+h(s)$ for non-expanded nodes
- Worst case: restarted for each state

Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, discard!
- Upside: good memory efficiency
- Downside: not complete or optimal

Variation:

- Priority queue with nodes that are at most $\boldsymbol{\varepsilon}$ worse than best node.

Recap and Examples

Example for A^{*} :

Recap and Examples

Example for A^{*} :

Recap and Examples

$$
5+4
$$

Example for IDA*:

Threshold = 8

PREFIX	OPEN
-	$S(0+8)$
S	$\mathrm{A}(1+7)$
S A	$\mathrm{H}(2+2) \mathrm{D}(4+4)$
S A H	$\mathrm{D}(4+4) \mathrm{F}(6+1)$
S A H F	$\mathrm{D}(4+4)$
S A D	

Recap and Examples

Example for IDA*:

Threshold = 9

PREFIX	OPEN
-	$S(0+8)$
S	$A(1+7) B(5+4)$
S A	$B(5+4) H(2+2) D(4+4)$
S A H	$B(5+4) D(4+4) F(6+1)$
S A H F	$B(5+4) D(4+4)$
S A D	$B(5+4)$
S B	$G(9+0)$
S B G	

Recap and Examples

Example for Beam Search: k=2

Summary

- Informed search: introduce heuristics
- Not all approaches work: best-first greedy is bad
- A* algorithm
- Properties of A*, idea of admissible heuristics
- Beyond A*
- IDA*, beam search. Ways to deal with space requirements.

Acknowledgements: Adapted from materials by Jerry Zhu and Fred Sala (University of Wisconsin-Madison).

