CS 540 Introduction to Artificial Intelligence

Search II: Informed Search

Yudong Chen
University of Wisconsin-Madison

Nov 16, 2021
Announcements

• HW8 released today
• Annotated slides
• Class roadmap
Outline

• Uninformed vs Informed Search
 – Review of uninformed strategies, adding heuristics

• A* Search
 – Heuristic properties, stopping rules, analysis

• Extensions: Beyond A*
 – Iterative deepening, beam search
Breadth-First Search

Recall: expand **shallowest** node first

- Data structure: queue

- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
 - Space $O(b^d)$
Uniform Cost Search

Recall: expand least-cost node first

• Generalization of BFS
• Data structure: priority queue

• Properties:
 – Complete
 – Optimal (if weight lower bounded by ϵ)
 – Time $O(b^{C*/\epsilon})$
 – Space $O(b^{C*/\epsilon})$

Optimal goal path cost
Depth-First Search

Recall: expand **deepest** node first

- Data structure: stack

Properties:
- Incomplete (stuck in infinite tree...)
- Suboptimal
- Time $O(b^m)$
- Space $O(bm)$
Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS

- Properties:
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
 - Space $O(bd)$

A good option!
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost $g(s)$ from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic $h(s)$ from s to goal
Informed Search

Informed search. Know:

• All uninformed search properties, plus
• Heuristic $h(s)$ from s to goal

• Use side information to **speed up search.**
Using the Heuristic

Back to uniform-cost search

• We had the priority queue
• Expand the node with the smallest $g(s)$
 – $g(s)$ “first-half-cost”
• Now let’s use the heuristic (“second-half-cost”)
 – Several possible approaches: let’s see what works
Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand node with smallest $h(s)$
- This isn’t a good idea. Why?

• Not optimal! *Get* $A \rightarrow C \rightarrow G$. *Want*: $A \rightarrow B \rightarrow C \rightarrow G$
Attempt 2: A Search

Next approach: use both $g(s) + h(s)$ alone

• Specifically, expand node with smallest $g(s) + h(s)$
• Again, use a priority queue
• Called “A” search

• Still not optimal! (Does work for former example).
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement

• Demand that $h(s) \leq h^*(s)$
• If heuristic has this property, “admissible”
 – Optimistic! Never over-estimates
• Still need $h(s) \geq 0$
 – Negative heuristics can lead to strange behavior
• This is A^* search
Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot, 1960’s

Credit: Wiki

Animation: finding a path around obstacle

Credit: Wiki
Admissible Heuristic Functions

Have to be careful to ensure admissibility (**optimism!**)

- **Example:** 8 Game

- One useful approach: **relax constraints**
 - $h(s) =$ number of tiles in wrong position
 - allows tiles to fly to destination in a single step
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic
Q 1.2: Which of the following are admissible heuristics?

(i) $h(s) = h^*(s)$
(ii) $h(s) = \max(2, h^*(s))$
(iii) $h(s) = \min(2, h^*(s))$
(iv) $h(s) = h^*(s) - 2$
(v) $h(s) = \sqrt{h^*(s)}$

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)
Heuristic Function Tradeoffs

Dominance: h_2 dominates h_1 if for all states s,
$$h_1(s) \leq h_2(s) \leq h^*(s)$$

- **Idea**: we want to be as close to h^* as possible
 - But not over!

- **Tradeoff**: being very close might require a very complex heuristic, expensive computation
 - Might be better off with cheaper heuristic & expand more nodes.
Heuristic Function Tradeoffs

• Example: 8 Game

Example State

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

• Previous heuristic: $h_1(s) =$ number of tiles in wrong position

• Better heuristic?
A* Termination

When should A* stop?

- One idea: as soon as we reach goal state?

- h admissible, but note that we get $A \rightarrow B \rightarrow G$ (cost 1000)!

```
A  B  G
h=2 1  h=0 999
h=0 1
h=1
```
A* Termination

When should A* stop?

• **Rule**: terminate *when a goal is popped* from queue.

• Note: taking $h = 0$ reduces to uniform cost search rule.
A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

- Put D back into priority queue, smaller $g+h$
A* Full Algorithm

1. Put the start node S on the priority queue, called OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which $f(n)$ is minimum (note that $f(n)=g(n)+h(n)$)
4. If n is a goal node, exit (trace back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n
 1. If n' is not already on OPEN or CLOSED estimate $h(n')$, $g(n')=g(n)+c(n,n')$, $f(n')=g(n')+h(n')$, and place it on OPEN.
 2. If n' is already on OPEN or CLOSED, then check if $g(n')$ is lower for the new version of n'. If so, then:
 1. Redirect pointers backward from n' along path yielding lower $g(n')$.
 2. Put n' on OPEN.
 3. If $g(n')$ is not lower for the new version, do nothing.
A* Analysis

Some properties:

• Terminates!
• A* can use **lots of memory**: $O(# \text{ states})$.
• Will run out on large problems.
• Next, we will consider some alternatives to deal with this.
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

• A. h_2 dominates h_1
• B. h_1 dominates h_2
• C. Neither dominates the other
Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A* after the initial state I?

- A. A
- B. B
- C. C
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

• Bound the memory in search.
• At each phase, don’t expand any node with $g(s) + h(s) > k$,
 – Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on

• Complete + optimal, might be costly time-wise
 – Revisit many nodes
• Lower memory use than A*
IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C^*, at most C^*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion
• Set new k to be the min $g(s) + h(s)$ for non-expanded nodes
• Worst case: restarted for each state
Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, discard!
- **Upside**: good memory efficiency
- **Downside**: not complete or optimal

Variation:

- Priority queue with nodes that are at most ε worse than best node.
Recap and Examples

Example for A*:

Initial state: S

Goal state: G

Path:
- S -> A (h=8)
- A -> B (h=4)
- B -> C (h=3)
- C -> G (h=0)

Cost:
- S to A: 1
- A to B: 5
- B to C: 8
- C to G: 4

Heuristic:
- A: h=7
- B: h=4
- C: h=3
- D: h=inf
- E: h=inf
- G: h=0
Recap and Examples

Example for A*:

OPEN
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0) S(0+8) A(1+7)
C(8+3) D(4+inf) E(8+inf) G(9+0) S(0+8) A(1+7) B(5+4)
C(8+3) D(4+inf) E(8+inf)

CLOSED
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0) S(0+8) A(1+7)
C(8+3) D(4+inf) E(8+inf) G(9+0) S(0+8) A(1+7) B(5+4)
C(8+3) D(4+inf) E(8+inf)

G → B → S
Recap and Examples

Example for IDA*: Threshold = 8

PREFIX
- S
S A H S A H F S A D

OPEN
S(0+8) A(1+7) H(2+2) D(4+4) D(4+4) F(6+1) D(4+4)

Goal state
Initial state
Recap and Examples

Example for IDA*: Threshold = 9

<table>
<thead>
<tr>
<th>PREFIX</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>S(0+8)</td>
</tr>
<tr>
<td>S</td>
<td>A(1+7) B(5+4)</td>
</tr>
<tr>
<td>S A</td>
<td>B(5+4) H(2+2) D(4+4)</td>
</tr>
<tr>
<td>S A H</td>
<td>B(5+4) D(4+4) F(6+1)</td>
</tr>
<tr>
<td>S A H F</td>
<td>B(5+4) D(4+4)</td>
</tr>
<tr>
<td>S A D</td>
<td>B(5+4)</td>
</tr>
<tr>
<td>S B</td>
<td>G(9+0)</td>
</tr>
<tr>
<td>S B G</td>
<td></td>
</tr>
</tbody>
</table>
Recap and Examples

Example for Beam Search: $k=2$

CURRENT

- OPEN
 - S(0+8)
 - A(1+7) B(5+4)
 - H(2+2) D(4+4)
 - D(4+4) F(6+1)
 - D(4+4) G(10+0)
 - G(10+0)

Goal state

h=0

Initial state

h=8

h=7

h=4

h=3

h=8

h=4

h=3

h=2

h=inf

h=inf

h=inf

h=inf

h=4

h=inf

h=0

h=1

h=4

h=7

h=5

h=4

h=3

h=8
Summary

• Informed search: introduce heuristics
 – Not all approaches work: best-first greedy is bad

• A* algorithm
 – Properties of A*, idea of admissible heuristics

• Beyond A*
 – IDA*, beam search. Ways to deal with space requirements.
Acknowledgements: Adapted from materials by Jerry Zhu and Fred Sala (University of Wisconsin-Madison).