A o 'ﬁg ’i'// s, el
e - - R

v ~ EEETTN

CS 540 Introduction to Artificial Intelligence
Search lll: Advanced Search

Yudong Chen
University of Wisconsin-Madison

Nov 18, 2021

Announcements

* Homeworks:
— HWS8 due Tuesday.

* Class roadmap:
— Today: Search Il

— Tuesday before and after Thanksgiving: Game
(uses Search)

Outline

* Advanced Search & Hill-climbing

— More difficult problems, basics, local optima, variations
* Simulated Annealing
— Basic algorithm, temperature, tradeoffs

* Genetic Algorithms

— Basics of evolution, fitness, natural selection

Search vs. Optimization

Before: wanted a path from start state to goal state

New setting: optimization o

Uninformed search, informed search

TuringFin

States s have values f{(s)
Want: s with optimal value f(s) (i.e, optimize over states)

Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

D B{ no couflictr
OQ(QF{ .+ . Examples: n Queens
| (]{\V WW(S (owt (ot -
A classic puzzle:

* Place 8 queens on a 8 x 8 chessboard so that no two have
same row, column, or diagonal. S E e ——

 (Can generalize to n x n chessboard.

 What are states s? Values f(s)?
— State: configuration of the board
— f(s): # of conflicting queens

Examples: TSP [ﬂ(
Tm\foim% Colesuman {ro e
Famous graph theory problem. @Ff*omo\(/%/ Fond Shorfect four

 Getagraph G =(V,E). Goal: a path that visits each node
exactly once and returns to the initial node (a tour).
— State: a particular tour (i.e., ordered Iist of nodes)
— f(s): total weight of the tour A
(e.g., total miles traveled)

ples: Satisfiability

ARID
atisfiability (e.g., 3-SAT)

/@Ej

Recall o

Exam

Boolean

re. Conjunctive normal form

i

Av-BVvOA(—AVvCvD) ABVDV—-EA(-Cv—-Dv—-E)A(-Av-CVE)

logic lec

C(aa;’é/

— Goal: find if satisfactory assignment exists.

— State: assignment to variables

R(-x,a,b) » R(b,y,c) » Rlc,d,~z)

_ f(s) # Satlsfled Cla uses R(x,a,d) a R(y,b,d) a R(a,b,e) a R(c,d,f) » R(z,c,0)

[afafafafafa—fa—fa=
cK< << < <<

[afafafafafafacfas]
R A R

N
L0.00000

e e e e e e e e
[ef=fafafafafacfas]

A
OSOOOOOOO

[afafafafafafacyas]
R A

A

[ef=fafafafafacfa
R A

A e e o,
CLLOLOL LU

[ef=fafafafafacfas]
<K< << << <<

[ef=—fafafafafafas]
<< LC S << C< <

[ef=fafafafafacfa]

Wiki

JX\QO {l@) \
’Kﬂ/\ Hill Climbing)

o~ :

—_ >
One approach to such optimization problems.

e Basic idea: move to a neighbor with a better f{(s)

* Q: how do we define neighbor?
— Not as obvious as our successors in search
— Problem-specific
— As we’ll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:
* Look at the most-conflicting column (ties? right-most one)

* Move queen in that column vertical a different location

Neighborhood of s

Defining Neighbors: TSP

For TSP, can do something similar:

* Define neighbors by small changes

 Example: 2-change: A-E and B-F
A-B-C-D-EtF-G-H-A

flip

A{E-D-C-B}F-G-H-A

Defining Neighbors: SAT

For Boolean satisfiability,

* Define neighbors by flipping one assignment of one variable

Starting state: TFTTT

(A=F, B=F, C=T, D=T, E=T)
(A=T, B=T, C=T, D=T, E=T)
(A=T, B=F, C=F, D=T, E=T)
(A=T, B=F, C=T, D=F, E=T)
(A=T, B=F, C=T, D=T, E=F)

Av—-BvC
—AvCvD
BvDv-—=E
—Cv-=aDv—=E
—Av-CvVE

Hill Climbing Neighbors

Q: What'’s a neighbor?

* Vague definition. For a given problem structure, neighbors
are states that can be produced by a small change

 Tradeoff!

— Too small? Will get struck.
— Too big? Not very efficient

* Q: how to pick a neighbor? Greedy
 Q:terminate? When no neighbor has bigger value

Hill Climbing Algorithm
Pseudocode: Mo -

Pick initial state s
Pick t in neighbors(s) with the largest f(t)

iff(g! < f(s) THEN stop, return s
s «— t. goto 2.

'R/

>

h W

What could happen? Local optimal

M Hill Climbing: Local Optima
-

Q: Why is it called hill climbing?

Global optimum, where

f we want to be
d fog

%

state state

L: What’s actually going on. R: What we get to see.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

\ \ Where do | go?

state state

Escaping Local Optima /| |,

Simple idea 1: random restarts ~ >

e Stuck: pick a random new starting point, re-run.

Do ktimes, return best of the k. < ma.usd}ﬂ(%%

L

;o Y

e “Stochastic” hill climbing: randomly select between neighbors

Simple idea 2: reduce greed

* Probability proportional to the value of neighbors

Hill Climbing: Variations

Q: neighborhood too large?

 Generate a few random neighbors, one at a time. Take the
better one.

Q: relax requirement to always go up?

e Often useful for harder problems ¥ g
e 3SAT algorithm: Walk-SAT BT
=

D. Selsam

Break & Quiz

Q 1.1: Hill climbing and SGD are related by

(i) Both head towards local optima

(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem (when
minimizing)

A. (i)

B. (i), (ii)

C. (i), (iii)

D. All of the above

Break & Quiz

Q 1.1: Hill climbing and SGD are related by

(i) Both head towards local optima

(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem (when
minimizing)

A. (i)

B. (i), (ii)

C. (i), (iii)

D. All of the above

Break & Quiz

Q 1.1: Hill climbing and SGD are related by
(i) Both head towards local optima
(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem (when
minimizing)

A. (i) (No: (iii) also true since convexity->local optima are global)
B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)
C. (i), (iii)

D. All of the above (No: (ii) false, as above.)

Simulated Annealing

A more sophisticated optimization approach.

* ldea: move quickly at first, then slow down

Simulated Annealing

A more sophisticated optimization approach.

* ldea: move quickly at first, then slow down
 Pseudocode:

Pick initial state x
For k = 0 through k;.,:

Reduce temperature T
Pick a random neighbou@ neighbor(x)
If f(y) = f(x), thenx &y

Else, with prob. P(f(x), f(y), T) thenx &y
Output: the final state x

The interesting bit

Simulated Annealing: Picking Probability

How do we pick probability P?

e Decrease with gap |f(x) - f(y)|
 Decrease with time k

Pick initial state x
For k = 0 through k;.,:
Reduce temperature T
Pick a random neighbour, y ¢ neighbor(x)
If f(y) = f(x), thenx &y
Else, with prob. P(f(x), f(y), T) thenx &y
Output: the final state x

> fomper o
Simulated Annealing: Picking Probability

How do we pick probability P? P(x,y,T) = exp (— 7 () ;f(y”)

e Decrease with gap |f(x) - f(y)| —
9
° I i —_ — —) _
Decrease with time k LNBIQ‘ T = @W(__ [Oebd) A é/(f(y&[
Swolk T = gp((—) QL _
 Temperature T cools over time FFC 2-00] ?ti ((MJe)
— High temperature, accept any y A0

— Low temperature, behaves like hill-climbing

— Still, | f(x) - fly)| plays a role: if big, replacement
probability low.

Simulated Annealing: Visualization

12

10+

Wiki

Simulated Annealing: Picking Parameters

——

hgu\) to VQD((LCQ [)
* Have to balance the various parts., e.g., cooling schedule.
— Too fast: becomes hill climbing, stuck in Iocafoptima

— Too slow: takes too long.

 Combines with variations (e.g., with random restarts)
— Probably should try hill-climbing first though.

* Inspired by cooling of metals
— We'll see one more alg. inspired by nature

Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
. - \
schedule for simulated annealing® K‘: Yorodion (pwils

Temp,,,= Temp, * 1.25
Tempy,,= Temp,
Temp,,;= Temp,* 0.8
Temp,,,;= Temp,* 0.0001

o0 w >

Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

Temp,,,= Temp, * 1.25
Tempy,,= Temp,
Temp,,,= Temp,* 0.8
Temp,,,;= Temp,* 0.0001

O 06 W >

_ b .
(MVM = Tl Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

Temp,,;= Temp,* 1.25 (No, temperate is increasing)
Temp,,;= Temp, (No, temperature is constant)
Temp,,,= Temp,* 0.8

O 06 W >

Temp,,,;= Temp,* 0.0001 (Cools too fast---basically hill
climbing)

Break & Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?

i. Finding the smallest set of vertices in a graph that involve all edges

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with
varying processing power

iii. Finding the fastest way through a maze

e A. (i)
e B. (ii)
e C. (i) and (ii)

e D. (ii) and (iii)

Break & Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?

i. Finding the smallest set of vertices in a graph that involve all edges

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with
varying processing power

iii. Finding the fastest way through a maze

o A. (i)

* B. (ii)

e C. (i) and (ii)
e D. (ii) and (iii)

Break & Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?

i. Finding the smallest set of vertices in a graph that involve all edges

ii. Finding the fastest way to schedule jobs with varying runtimes on machines with
varying processing power

iii. Finding the fastest way through a maze

* A. (i) (Too many states for A*, don’t care about path)

e B. (ii) (Similar to above)

e C. (i) and (ii)

* D. (ii) and (iii) ((iii) is good for A*: few successors, want path)

Genetic Algorithms

Another optimization approach based on nature

e Survival of the fittest!

Evolution Review

Encode genetic information in DNA (four bases)
 A/C/T/G: nucleobases acting as symbols

* Two types of changes
— Crossover: exchange between parents’ codes

— Mutation: rarer random process
* Happens at individual level

Natural Selection

Competition for resources

* Organisms better fit = better probability of reproducing
* Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

— New terminology: state s ‘individual’
— Value f(s) is now the ‘fitness’

Genetic Algorithms Setup |

Keep around a fixed number of states/individuals
* A bit like beam search

e (Call this the population

For our n Queens game example, an individual:

(32752411)

_ NP, J©

&%7’2& Genetic Algorithms Setup Il

Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution

* E.g., analogous to natural selection, cross-over, and-mutation

e — -

S | 24748552 | |24 |31% _[32752411) : 48552 |—f~ 32744152 |
Sc [32752411 [[23(20% ~[247fasss2f = N\ 24752412 [——~{ 24752411 |
\ 0 n N
Sy [24415124] 20|26% ~[32752411 \ : «[32752124 [H—{ 3252124 |
SKF | 32543213 %‘|24415§124 : V24415411 H—{ 24415417]
@) (b) © : (d) (©)
Initial Population tness Funclon Selection . Cross—Over Mutation

of non- b
%(9) — attacking pairs proo.

reproduction 1 —> Next generation
o fitness

Genetic Algorithms Pseudocode

Just one variant:

1.
2.
3.

Let s, ..., Sy be the current population

Let p; = f(s;) / Z; f(s;) be the reproduction probability

for k = 1; k<N; k+=2

. parentl = randomly pick according to p

. parent2 = randomly pick another

. randomly select a crossover point, swap strings of
parents 1, 2 to generate children t[k], t[k+1]

for k = 1; k<=N; k++

. Randomly mutate each position in t[k] with a small
probability (mutation rate)

The new generation replaces the old: { s }<{t}. Repeat

Reproduction: Proportional Selection

Reproduction probability: p; = f(s;) / Z; f(s))

* Example: X, f(s;) = 5+20+11+8+6=50

. p,=5/50=10%
S

39
Individual | Fitness |Prob.
A 5 10%
B 20 40%
C 11 22%
D 8 16%
E 6 12%

Example: Scheduling Courses

Let’s run through an example:

e 3time slots: Mon/Wed, Tue/Thu, Fri/Sat

5 courses: A,B,C,D,E

Students wish to enroll in three courses

Goal: maximize student enrollment

Courses Students
ABC 2
ABD 7
ADE 3
BCD 4
BDE 10

CDE

5

Let’s run through an example:

Example: Scheduling Courses

e State: course assignment to time slot

M M F T M
A B C D E
0

e Here:

=MMEFTM

— Courses A, B, E scheduled Mon/Wed

— Course D scheduled Tue/Thu
— Course C scheduled Fri/Sat

Courses

Students

ABC

2

ABD

7

ADE

3

BCD

4

BDE

10

CDE

5

Example: Scheduling Courses

U~V
Value of a state? Sayw

Courses | Students | Can enroll?
ABC 2 No
TABD., 7 No
"ADE 3 No
pre— — >,
BCD Yes
BDE 10 No
CDE @ Yes

* Here 4+5=9 students can enroll in desired courses

Example: Scheduling Courses

First step:

Randomly initialize and evaluate state:(;,

/
G MMETM=9 S
S2 TIFMM=4 5 3
¢, FMTTF=19 &y 1)

__’_/'

%i MTTTF = 3 942 >

Calculate reproduction probabilities

MMFTM = 26% — 9+4 (113

TTFMM = 11%
FMTTEF = 54%

MTTTFE = 9%

Courses Students
ABC 2
ABD 7
ADE 3
BCD 4
BDE 10
CDE 5

Example: Scheduling Courses

Next steps:

* Select parents using reproduction probabilities
* Perform crossover

 Randomly mutate new children

MMFTM = 26% FMTTF <~ FM[TF FMFTM FMETE) FMETT
TTFMM = 11% MMFTM MMEFTM - MMTTF MMTTF MMTTF
FMTTF = 54% MTTTF MTTTF MMTTF MMTTF MMTFF

MTTTF = 9% FMTTF FMTTF FTTTF FITTHE FTETE

Example: Scheduling Courses

Continue:

 Now, get our function values for updated population

* (Calculate reproduction probabilities

FMFTT =11
MMTTE =13
MMTFF =4
FTTTE =0

FMETT = 39%
MMTTF = 46%
MMTFEF = 14%
FTTTE =0%

Courses Students
ABC 2
ABD 7
ADE 3
BCD 4
BDE 10

CDE

5

Variations & Concerns

Many possibilities:
* Parents survive to next generation

* Ranking instead of exact value of f(s) for reproduction
probabilities

Some challenges
e State encoding

* Lack of diversity: converge too soon
 Must pick a lot of parameters

T f20lT
Clobek. o™ Summary

* Challenging optimization problems

— First, try hill climbing. Simplest solution
 Simulated annealing
— More sophisticated approach; helps with local optima

* Genetic algorithms

— Biology-inspired optimization routine

P e i e - e st o O e oM De SS S

I 3o ~ o
e T T, 5 Tt s L a1 gy DU - 3 2 WS

Acknowledgements: Adapted from materials by Fred Sala, Jerry Zhu + Tony
Gitter (University of Wisconsin), Andrew Moore

