
CS 540 Introduction to Artificial Intelligence
Search III: Advanced Search

Yudong Chen
University of Wisconsin-Madison

Nov 18, 2021

Announcements

• Homeworks:
– HW8 due Tuesday.

• Class roadmap:
– Today: Search III
– Tuesday before and after Thanksgiving: Game

(uses Search)

Outline

• Advanced Search & Hill-climbing
– More difficult problems, basics, local optima, variations

• Simulated Annealing
– Basic algorithm, temperature, tradeoffs

• Genetic Algorithms
– Basics of evolution, fitness, natural selection

Search vs. Optimization

Before: wanted a path from start state to goal state
• Uninformed search, informed search

New setting: optimization
• States s have values f(s)
• Want: s with optimal value f(s) (i.e, optimize over states)
• Challenging setting: too many states for previous search

approaches, but maybe not a continuous function for SGD.

Wiki TuringFin

Examples: n Queens

A classic puzzle:
• Place 8 queens on a 8 x 8 chessboard so that no two have

same row, column, or diagonal.
• Can generalize to n x n chessboard.

• What are states s? Values f(s)?
– State: configuration of the board
– f(s): # of conflicting queens

Wiki

Examples: TSP

Famous graph theory problem.
• Get a graph G = (V,E). Goal: a path that visits each node

exactly once and returns to the initial node (a tour).
– State: a particular tour (i.e., ordered list of nodes)
– f(s): total weight of the tour
(e.g., total miles traveled)

J. Yu

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)
• Recall our logic lecture. Conjunctive normal form

– Goal: find if satisfactory assignment exists.
– State: assignment to variables
– f(s): # satisfied clauses

(A Ú ¬B Ú C) ∧ (¬A Ú C Ú D) ∧ (B Ú D Ú ¬E) ∧ (¬ C Ú ¬ D Ú ¬E) ∧ (¬ A Ú ¬C Ú E)

Wiki

Hill Climbing

One approach to such optimization problems.
• Basic idea: move to a neighbor with a better f(s)

• Q: how do we define neighbor?
– Not as obvious as our successors in search
– Problem-specific
– As we’ll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:
• Look at the most-conflicting column (ties? right-most one)
• Move queen in that column vertically to a different location

…

s
f(s)=1

Neighborhood of s

f=1

f=2

Defining Neighbors: TSP

For TSP, can do something similar:
• Define neighbors by small changes
• Example: 2-change: A-E and B-F

A-B-C-D-E-F-G-H-A

A-E-D-C-B-F-G-H-A

flip

Defining Neighbors: SAT

For Boolean satisfiability,
• Define neighbors by flipping one assignment of one variable
Starting state: TFTTT

(A=F, B=F, C=T, D=T, E=T)
(A=T, B=T, C=T, D=T, E=T)
(A=T, B=F, C=F, D=T, E=T)
(A=T, B=F, C=T, D=F, E=T)
(A=T, B=F, C=T, D=T, E=F)

A Ú ¬B Ú C
¬A Ú C Ú D
B Ú D Ú ¬E
¬C Ú ¬ D Ú ¬E
¬A Ú ¬C Ú E

Hill Climbing Neighbors

Q: What’s a neighbor?
• Vague definition. For a given problem structure, neighbors

are states that can be produced by a small change
• Tradeoff!

– Too small? Will get struck.
– Too big? Not very efficient

• Q: how to pick a neighbor? Greedy
• Q: terminate? When no neighbor has bigger value

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the largest f(t)
3. if f(t) ≤ f(s) THEN stop, return s
4. s← t. goto 2.

Hill Climbing: Local Optima

Q: Why is it called hill climbing?

L: What’s actually going on. R: What we get to see.
state

f
Global optimum, where

we want to be

state

f fog

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Escaping Local Optima

Simple idea 1: random restarts
• Stuck: pick a random new starting point, re-run.
• Do k times, return best of the k.

Simple idea 2: reduce greed
• “Stochastic” hill climbing: randomly select between neighbors
• Probability proportional to the value of neighbors

Hill Climbing: Variations

Q: neighborhood too large?
• Generate a few random neighbors, one at a time. Take the

better one.

Q: relax requirement to always go up?
• Often useful for harder problems
• 3SAT algorithm: Walk-SAT

D. Selsam

Break & Quiz
Q 1.1: Hill climbing and SGD are related by
(i) Both head towards local optima
(ii) Both require computing a gradient
(iii) Both will find the global optimum for a convex problem (when

minimizing)
• A. (i)
• B. (i), (ii)
• C. (i), (iii)
• D. All of the above

Break & Quiz
Q 1.1: Hill climbing and SGD are related by
(i) Both head towards local optima
(ii) Both require computing a gradient
(iii) Both will find the global optimum for a convex problem (when

minimizing)
• A. (i)
• B. (i), (ii)
• C. (i), (iii)
• D. All of the above

Break & Quiz

Q 1.1: Hill climbing and SGD are related by

(i) Both head towards local optima

(ii) Both require computing a gradient

(iii) Both will find the global optimum for a convex problem (when

minimizing)

• A. (i) (No: (iii) also true since convexity->local optima are global)

• B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)

• C. (i), (iii)
• D. All of the above (No: (ii) false, as above.)

Simulated Annealing

A more sophisticated optimization approach.
• Idea: move quickly at first, then slow down

Wiki

Simulated Annealing

A more sophisticated optimization approach.
• Idea: move quickly at first, then slow down
• Pseudocode:

Pick initial state x
For k = 0 through kmax:

Reduce temperature T
Pick a random neighbour, y ← neighbor(x)
If f(y) ≥ f(x), then x ← y
Else, with prob. P(f(x), f (y), T) then x ← y

Output: the final state x

The interesting bit

Simulated Annealing: Picking Probability

How do we pick probability P?
• Decrease with gap |f(x) - f(y)|
• Decrease with time k

Pick initial state x
For k = 0 through kmax:

Reduce temperature T
Pick a random neighbour, y ← neighbor(x)
If f(y) ≥ f(x), then x ← y
Else, with prob. P(f(x), f (y), T) then x ← y

Output: the final state x

Simulated Annealing: Picking Probability

How do we pick probability P?
• Decrease with gap |f(x) - f(y)|
• Decrease with time k

• Temperature T cools over time
– High temperature, accept any y
– Low temperature, behaves like hill-climbing
– Still, |f(x) - f(y)| plays a role: if big, replacement

probability low.

Simulated Annealing: Visualization

Wiki

Simulated Annealing: Picking Parameters
• Have to balance the various parts., e.g., cooling schedule.

– Too fast: becomes hill climbing, stuck in local optima
– Too slow: takes too long.

• Combines with variations (e.g., with random restarts)
– Probably should try hill-climbing first though.

• Inspired by cooling of metals
– We’ll see one more alg. inspired by nature

Break & Quiz
Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

A. Tempk+1= Tempk* 1.25
B. Tempk+1= Tempk

C. Tempk+1= Tempk* 0.8
D. Tempk+1= Tempk* 0.0001

Break & Quiz
Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

A. Tempk+1= Tempk* 1.25
B. Tempk+1= Tempk

C. Tempk+1= Tempk* 0.8
D. Tempk+1= Tempk* 0.0001

Break & Quiz

Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

A. Tempk+1= Tempk* 1.25 (No, temperate is increasing)

B. Tempk+1= Tempk (No, temperature is constant)

C. Tempk+1= Tempk* 0.8
D. Tempk+1= Tempk* 0.0001 (Cools too fast---basically hill

climbing)

Break & Quiz
Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with

varying processing power
iii. Finding the fastest way through a maze

• A. (i)
• B. (ii)
• C. (i) and (ii)
• D. (ii) and (iii)

Break & Quiz
Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with

varying processing power
iii. Finding the fastest way through a maze

• A. (i)
• B. (ii)
• C. (i) and (ii)
• D. (ii) and (iii)

Break & Quiz
Q 2.2: Which of the following would be better to solve with simulated annealing
than A* search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with

varying processing power
iii. Finding the fastest way through a maze

• A. (i) (Too many states for A*, don’t care about path)
• B. (ii) (Similar to above)
• C. (i) and (ii)
• D. (ii) and (iii) ((iii) is good for A*: few successors, want path)

Another optimization approach based on nature
• Survival of the fittest!

Genetic Algorithms

Evolution Review

Encode genetic information in DNA (four bases)
• A/C/T/G: nucleobases acting as symbols

• Two types of changes
– Crossover: exchange between parents’ codes
– Mutation: rarer random process

• Happens at individual level

Natural Selection

Competition for resources
• Organisms better fit ➔ better probability of reproducing
• Repeated process: fit become larger proportion of population

Goal: use these principles for optimization
– New terminology: state s ‘individual’
– Value f(s) is now the ‘fitness’

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals
• A bit like beam search
• Call this the population
For our n Queens game example, an individual:

(3 2 7 5 2 4 1 1)

Genetic Algorithms Setup II
Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution
• E.g., analogous to natural selection, cross-over, and mutation

à Next generation
of non-

attacking pairs prob.
reproduction
µ fitness

Genetic Algorithms Pseudocode

Just one variant:
1. Let s1, …, sN be the current population
2. Let pi = f(si) / Sj f(sj) be the reproduction probability
3. for k = 1; k<N; k+=2

• parent1 = randomly pick according to p
• parent2 = randomly pick another
• randomly select a crossover point, swap strings of

parents 1, 2 to generate children t[k], t[k+1]
4. for k = 1; k<=N; k++

• Randomly mutate each position in t[k] with a small
probability (mutation rate)

5. The new generation replaces the old: { s }ß{ t }. Repeat

Reproduction probability: pi = f(si) / Sj f(sj)
• Example: Sj f(sj) = 5+20+11+8+6=50
• p1=5/50=10%

Reproduction: Proportional Selection

Example: Scheduling Courses

Let’s run through an example:
• 5 courses: A,B,C,D,E
• 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat
• Students wish to enroll in three courses
• Goal: maximize student enrollment

Courses Students
A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

Example: Scheduling Courses

Let’s run through an example:
• State: course assignment to time slot

• Here:
– Courses A, B, E scheduled Mon/Wed
– Course D scheduled Tue/Thu
– Course C scheduled Fri/Sat

Courses Students
A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

M M F T M

A B C D E = MMFTM

Example: Scheduling Courses

Value of a state? Say MMFTM

• Here 4+5=9 students can enroll in desired courses

Courses Students Can enroll?
A B C 2 No

A B D 7 No

A D E 3 No

B C D 4 Yes

B D E 10 No

C D E 5 Yes

Example: Scheduling Courses

First step:
• Randomly initialize and evaluate states

• Calculate reproduction probabilities

Courses Students
A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

MMFTM = 9

TTFMM = 4

FMTTF = 19

MTTTF = 3

MMFTM = 26%

TTFMM = 11%

FMTTF = 54%

MTTTF = 9%

Example: Scheduling Courses

Next steps:
• Select parents using reproduction probabilities
• Perform crossover
• Randomly mutate new children

Example: Scheduling Courses

Continue:
• Now, get our function values for updated population
• Calculate reproduction probabilities

FMFTT = 11
MMTTF = 13
MMTFF = 4
FTTTF = 0

Courses Students
A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

FMFTT = 39%
MMTTF = 46%
MMTFF = 14%
FTTTF = 0%

Variations & Concerns
Many possibilities:
• Parents survive to next generation
• Ranking instead of exact value of f(s) for reproduction

probabilities

Some challenges
• State encoding
• Lack of diversity: converge too soon
• Must pick a lot of parameters

Summary

• Challenging optimization problems
– First, try hill climbing. Simplest solution

• Simulated annealing
– More sophisticated approach; helps with local optima

• Genetic algorithms
– Biology-inspired optimization routine

Acknowledgements: Adapted from materials by Fred Sala, Jerry Zhu + Tony
Gitter (University of Wisconsin), Andrew Moore

