Announcements

• **Homeworks:**
 – HW 9 deadline extended to next Tuesday (Dec 7)
 – HW 10 to be released on Thursday. Due Dec 14 Tuesday

• **Class roadmap:**
 – Today: Game II
 – Next: Reinforcement Learning
Outline

• Review of game theory basics
 – Properties, mathematical setup, simultaneous games

• Sequential games
 – Game trees, minimax, search approaches

• Speeding up sequential game search
 – Pruning, heuristics
Review of Games: Multiple Agents

Games setup: **multiple** agents

- Now: interactions between agents
- Still want to maximize utility
- **Strategic** decision making.
Review of Games: Properties

Let’s work through properties of games

- **Number** of agents/players
- State & action spaces: **discrete** or **continuous**
- **Finite** or **infinite**
- **Deterministic** or **random**
- **Sum**: zero or positive or negative
- **Sequential** or **simultaneous**
Review: Prisoner’s Dilemma

Famous example from the ‘50s.

Two prisoners A & B. Can choose to betray the other or not.

- A and B both betray, each of them serves two years in prison
- One betrays, the other doesn’t: betrayer free, other three years
- Both do not betray: one year each

Properties: 2-player, discrete, finite, deterministic, negative-sum, simultaneous
Review: Normal Form

Mathematical description of simult. games. Has:

• n players \{1,2,...,n\}
• Player i strategy a_i from A_i. \textbf{All}: $a = (a_1, a_2, ..., a_n)$
• Player i gets rewards $u_i(a)$ for any outcome
 – \textbf{Note}: reward depends on other players!

• Setting: all of these spaces, rewards are \textbf{known}
Review: Example of Normal Form

Ex: Prisoner’s Dilemma

<table>
<thead>
<tr>
<th>Player 2</th>
<th>Stay silent</th>
<th>Betray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stay silent</td>
<td>−1, −1</td>
<td>−3, 0</td>
</tr>
<tr>
<td>Betray</td>
<td>0, −3</td>
<td>−2, −2</td>
</tr>
</tbody>
</table>

- **2 players, 2 actions**: yields 2x2 matrix
- Strategies: \{Stay silent, betray\} (i.e, binary)
- Rewards: \{0,−1,−2,−3\}
Review: Dominant Strategies

Let’s analyze such games. Some strategies are better

- Dominant strategy: if a_i better than $a_i’$ regardless of what other players do, a_i is **dominant**

 - I.e.,

 $u_i(a_i, a_{-i}) \geq u_i(a'_i, a_{-i}) \forall a'_i \neq a_i$ and $\forall a_{-i}$

 All of the other entries of a excluding i

- Doesn’t always exist!
Review: Equilibrium

\[(a_1^*, \ldots, a_n^*) \]

\(a^* \) is an equilibrium if all the players do not have an incentive to **unilaterally deviate**

\[u_i(a_i^*, a_{-i}^*) \geq u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i \quad \forall a_{-i} \]

- All players dominant strategies -> equilibrium
- Converse doesn’t hold (don’t need dominant strategies to get an equilibrium)
Review: Pure and Mixed Strategies

So far, all our strategies are deterministic: “pure”

- Take a particular action, no randomness

Can also randomize actions: “mixed”

- Assign probabilities x_i to each action

\[x_i(a_i), \text{ where } \sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \geq 0 \]

- Note: have to now consider expected rewards
Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

- This is a **Nash equilibrium** if

\[u_i(x_i^*, x_{-i}^*) \geq u_i(x_i, x_{-i}^*) \quad \forall x_i \in \Delta_{A_i}, \forall i \in \{1, ..., n\} \]

- Intuition: nobody can **increase expected reward** by changing only their own strategy. A type of solution!
Break & Quiz

Q 1.1: Which of the following is false

• A. The set of mixed strategies includes pure strategies.
• B. A game can be simultaneous but have imperfect information.
• C. A game may not have any dominating strategies.
• D. All finite two player games have pure Nash equilibria.
Break & Quiz

Q 1.1: Which of the following is **false**

- A. The set of mixed strategies includes pure strategies.
- B. A game can be simultaneous but have imperfect information.
- C. A game may not have any dominating strategies.
- **D. All finite two player games have pure Nash equilibria.**
Q 1.1: Which of the following is false

• A. The set of mixed strategies includes pure strategies. (Yes: deterministic is a subset of random---such strategies have all the probability mass on one outcome.)
• B. A game can be simultaneous but have imperfect information. (Example: RPS. There’re sequential games with imperfect info. as well, e.g., Battleship.)
• C. A game may not have any dominating strategies. (RPS).
• D. All finite two player games have pure Nash equilibria. (This is false---they all have mixed equilibria, but not necessarily pure.)
Sequential Games

More complex games with multiple moves

• Instead of normal form, **extensive form**
• Represent with a **tree**
• Find strategies: perform search over the tree

• Can still look for Nash equilibrium
 – Or, other criteria like **minimax**
II-Nim: Example Sequential Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from one of the piles
• Take last stick: lose

• Two players: Max and Min
• If Max wins, the score is +1; otherwise -1
• Min’s score is –Max’s
• Use Max’s as the score of the game
Game Trajectory
(ii, ii)
Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)
Game Trajectory
(ii, ii)
Max takes one stick from one pile

(i, ii)
Min takes two sticks from the other pile

(i,-)
Game Trajectory

(ii, ii)

Max takes one stick from one pile

(i, ii)

Min takes two sticks from the other pile

(i,-)

Max takes the last stick

(-,-)

Max gets score -1
Game tree for II-Nim

Two players: Max and Min

Max wants the largest score
Min wants the smallest score

Convention: score is w.r.t. the first player Max. Min’s score = – Max
Two players: Max and Min

Symmetry $(i \ ii) = (ii \ i)$

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Game tree for II-Nim

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Strategies & Rewards

Let’s stick to zero-sum two-player games

• Strategies: player 1 (Max): s, player 2 (Min): t

• Player 1 (Max): reward $u(s,t)$, player 2 (Min): $-u(s,t)$

• Max goal: maximize $u(s,t)$

• Goal: find strategies s, t that do this.
Minimax Theorem

Famous result of von Neumann

• Says: there are strategies s^* and t^* and a value u^*, the **minimax value** so that

 - If Min uses t^*, then Max’s reward $\leq u^*$ (i.e., $\max_s u(s, t^*) = u^*$)
 - If Max uses s^*, then Max’s reward $\geq u^*$ (i.e., $\min_t u(s^*, t) = u^*$)

• So: $u(s^*, t^*) = u^*$

• Also: if game has perfect information, there are pure strategies s^*, t^* that satisfy the result
Finding The Strategies

Back to our game tree

• Write down all the pure strategies (e.g., the big tree) and select the s^* and t^*

\[
s^* = \arg \max_{s \in S} \min_{t \in T} u(s, t) \quad t^* = \arg \min_{t \in T} \max_{s \in S} u(s, t)
\]

• Big search, since for branching factor b, height h, need to look at $\sim b^h$ strategies
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score

Min wants the smallest score
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score
Min wants the smallest score
Game tree for II-Nim

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score
Two players: Max and Min

Max wants the largest score
Min wants the smallest score

The first player always loses, if the second player plays optimally!
Q 2.1: We are playing a game where Player A goes first and has 4 moves. Player B goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination nodes (leaves)?

- A. 23
- B. 65
- C. 41
- D. 2
Q 2.1: We are playing a game where Player A goes first and has 4 moves. Player B goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination nodes (leaves)?

• A. 23
• B. 65
• C. 41
• D. 2
Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves. Player B goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination nodes (leaves)?

• A. 23
• B. 65 ($1 + 4 + 4*3 + 4*3*2 + 4*3*2 = 65$. Note the root and leaf nodes.)
• C. 41
• D. 2
Q 2.2: During minimax tree search, must we examine every node?

• A. Always
• B. Sometimes
• C. Never
Break & Quiz

Q 2.2: During minimax tree search, must we examine every node?

- A. Always
- **B. Sometimes**
- C. Never
Q 2.2: During minimax tree search, must we examine every node?

See pruning (later)

- A. Always (No: consider layer k, where we take the max of all the mins of its children at layer $k+1$. If the current value of a min node at $k+1$ already smaller than the current max, we don’t need to continue the minimization.)
- B. Sometimes
- C. Never (No: the event above may simply not happen).
Our Approach So Far

We find the minimax value/strategy bottom up

- Minimax value: score of terminal node when both players play optimally
 - Max’s turn, take max of children
 - Min’s turn, take min of children

- Can implement this as depth-first search: minimax algorithm
Minimax Algorithm

function **Max-Value**(s)
inputs:
s: current state in game, Max about to play
output: *best-score (for Max) available from s*

if (s is a terminal state)
 then return (terminal value of s)
else
 \(\alpha := -\infty \)
 for each \(s' \) in Succ(s)
 \(\alpha := \max(\alpha, \text{Min-value}(s') \)\)
return \(\alpha \)

function **Min-Value**(s)
output: *best-score (for Min) available from s*

if (s is a terminal state)
 then return (terminal value of s)
else
 \(\beta := \infty \)
 for each \(s' \) in Succs(s)
 \(\beta := \min(\beta, \text{Max-value}(s') \)\)
return \(\beta \)

Time complexity?
• \(O(b^m) \)

Space complexity?
• \(O(bm) \)
Minimax algorithm in execution

max

min

max

min

\[\alpha = -\infty \]
Minimax algorithm in execution

\[\alpha = -\infty \]
\[\beta = +\infty \]
The execution on the terminal nodes is omitted.
Minimax algorithm in execution

max

\[\alpha = -\infty \]

min

\[\beta = 100 \]

max

\[\min \]

\[\max \]

\[\min \]
Minimax algorithm in execution

max

$\alpha=100$

A

$\beta=100$

B

C

D

E

F

G

H

I

min

max

min

$\text{Minimax algorithm in execution}$
Minimax algorithm in execution

\[
\begin{align*}
\text{max} & \quad \alpha=100 \\
\text{min} & \quad \beta=+\infty \\
\text{max} & \\
\text{min}
\end{align*}
\]
Minimax algorithm in execution

\[
\begin{align*}
\text{max} & \quad \alpha=100 \\
\text{min} & \\
\text{max} & \\
\text{min} &
\end{align*}
\]
Minimax algorithm in execution

max

min

max

min

α=100

β=20
Minimax algorithm in execution

max

min

max

min
Minimax algorithm in execution

\[
\begin{align*}
\text{max} & \quad \alpha = 100 \\
\text{min} & \\
\text{max} & \\
\text{min} &
\end{align*}
\]
Can We Do Better?

One **downside**: we had to examine the entire tree

An idea to speed things up: **pruning**

- Goal: want the same minimax value, but faster
- We can get rid of bad branches
- Same principle as quiz question
Alpha-beta pruning

function Max-Value (s,α,β)
inputs:
 s: current state in game, Max about to play
 α: best score (highest) for Max along path to s
 β: best score (lowest) for Min along path to s
output: \(\min(β, \text{best-score (for Max) available from s}) \)
 if (s is a terminal state)
 then return (terminal value of s)
 else for each \(s' \) in \(\text{Succ}(s) \)
 \(α := \max(α, \text{Min-value}(s',α,β)) \)
 if (\(α ≥ β \)) then return β /* alpha pruning */
 return α

function Min-Value(s,α,β)
output: \(\max(α, \text{best-score (for Min) available from s}) \)
 if (s is a terminal state)
 then return (terminal value of s)
 else for each \(s' \) in \(\text{Succs}(s) \)
 \(β := \min(β, \text{Max-value}(s',α,β)) \)
 if (\(α ≥ β \)) then return \(α \) /* beta pruning */
 return β

Starting from the root:
Max-Value(root, -∞, +∞)
How effective is alpha-beta pruning?

- Depends on the order of successors!
 - Best case, the #of nodes to search is $O(b^{m/2}) = O(\sqrt{b}^m)$
 - Happens when each player's best move is the leftmost child.
 - The worst case is no pruning at all.

- In DeepBlue, the average branching factor was about 6 with alpha-beta instead of 35-40 without.
Minimax With Heuristics

Note that long games are yield huge computation

• To deal with this: limit d for the search depth

• **Q:** What to do at depth d, but no termination yet?

 – **A:** Use a heuristic evaluation function $e(x)$

function

$\text{MINIMAX}(x, d)$ **returns** an estimate of x’s utility value

inputs: x, current state in game

\[d, \text{an upper bound on the search depth} \]

if x is a terminal state then **return** Max’s payoff at x

else if $d = 0$ then **return** $e(x)$

else if it is Max’s move at x then

return \[\max \{ \text{MINIMAX}(y, d-1) : y \text{ is a child of } x \} \]

else **return** \[\min \{ \text{MINIMAX}(y, d-1) : y \text{ is a child of } x \} \]

Credit: Dana Nau
Heuristic Evaluation Functions

- e(x) often a weighted sum of features (like our linear models)
 \[e(x) = w_1 f_1(x) + w_2 f_2(x) + \ldots + w_n f_n(x) \]

- Chess example: \(f_i(x) \) = **difference** between number of white and black, with \(i \) ranging over piece types.
 - Set weights according to piece importance
 - E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black knights)
Going Further

• Monte Carlo tree search (MCTS)
 – Uses random sampling of the search space
 – Choose some children (heuristics to figure out #)
 – Record results, use for future play
 – Self-play

• AlphaGo and other big results!

= all we've talk about (heuristic)

+ RL + NN

Credit: Surag Nair
Summary

• Review of game theory
 – Properties, Mathematical formulation for simultaneous games Normal form, dominance, equilibria, mixed vs pure

• Sequential games
 – Game trees, minimax value, minimax algorithm

• Improving our search
 – Using heuristics, pruning, random search
Acknowledgements: Developed from materials by Fred Salad and Yingyu Liang (University of Wisconsin), James Skrentny (University of Wisconsin), inspired by Haifeng Xu (UVA) and Dana Nau (University of Maryland).