
CS 540 Introduction to Artificial Intelligence
Games II
Yudong Chen

University of Wisconsin-Madison
November 30, 2021

Announcements

• Homeworks:
– HW 9 deadline extended to next Tuesday (Dec 7)
– HW 10 to be released on Thursday. Due Dec 14 Tuesday

• Class roadmap:
– Today: Game II
– Next: Reinforcement Learning

Outline

• Review of game theory basics
– Properties, mathematical setup, simultaneous games

• Sequential games
– Game trees, minimax, search approaches

• Speeding up sequential game search
– Pruning, heuristics

Review of Games: Multiple Agents

Games setup: multiple agents

– Now: interactions between agents
– Still want to maximize utility
– Strategic decision making.

World

Player 1

Player 2

Player 3

Review of Games: Properties

Let’s work through properties of games
• Number of agents/players
• State & action spaces: discrete or continuous
• Finite or infinite
• Deterministic or random
• Sum: zero or positive or negative
• Sequential or simultaneous

Wiki

Review: Prisoner’s Dilemma

Famous example from the ‘50s.
Two prisoners A & B. Can choose to betray the other or not.

– A and B both betray, each of them serves two years in prison
– One betrays, the other doesn’t: betrayer free, other three years
– Both do not betray: one year each

Properties: 2-player, discrete, finite,
deterministic, negative-sum, simultaneous

Mathematical description of simult. games. Has:
• n players {1,2,…,n}
• Player i strategy ai from Ai. All: a = (a1, a2, …, an)
• Player i gets rewards ui (a) for any outcome
– Note: reward depends on other players!

• Setting: all of these spaces, rewards are known

Review: Normal Form

Ex: Prisoner’s Dilemma

• 2 players, 2 actions: yields 2x2 matrix
• Strategies: {Stay silent, betray} (i.e, binary)
• Rewards: {0,-1,-2,-3}

Review: Example of Normal Form

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2

Let’s analyze such games. Some strategies are better
• Dominant strategy: if ai better than ai’ regardless of what

other players do, ai is dominant
• I.e.,

• Doesn’t always exist!

Review: Dominant Strategies

All of the other entries
of a excluding i

a* is an equilibrium if all the players do not have an
incentive to unilaterally deviate

• All players dominant strategies -> equilibrium
• Converse doesn’t hold (don’t need dominant

strategies to get an equilibrium)

Review: Equilibrium

So far, all our strategies are deterministic: “pure”
• Take a particular action, no randomness

Can also randomize actions: “mixed”
• Assign probabilities xi to each action

• Note: have to now consider expected rewards

Review: Pure and Mixed Strategies

Consider the mixed strategy x* = (x1*, …, xn*)

• This is a Nash equilibrium if

• Intuition: nobody can increase expected reward by
changing only their own strategy. A type of solution!

Review: Nash Equilibrium

Better than doing
anything else,
“best response”

Space of
probability
distributions

Break & Quiz
Q 1.1: Which of the following is false

• A. The set of mixed strategies includes pure strategies.
• B. A game can be simultaneous but have imperfect information.
• C. A game may not have any dominating strategies.
• D. All finite two player games have pure Nash equilibria.

Sequential Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Find strategies: perform search over the tree

• Can still look for Nash equilibrium
– Or, other criteria like minimax

Wiki

II-Nim: Example Sequential Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min
• If Max wins, the score is +1; otherwise -1
• Min’s score is –Max’s
• Use Max’s as the score of the game

(ii, ii)

Game Trajectory
(ii, ii)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)
Min takes two sticks from the other pile

(i,-)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)
Min takes two sticks from the other pile

(i,-)
Max takes the last stick

(-,-)
Max gets score -1

Game tree for II-Nim
(ii ii) Max

Convention: score is w.r.t. the first
player Max. Min’s score = – Max

who is to move
at this state

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(ii ii) Max

(i ii) Min (- ii) MinSymmetry
(i ii) = (ii i)

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

Strategies & Rewards

Let’s stick to zero-sum two-player games
• Strategies: player 1 (Max): s, player 2 (Min): t
• Player 1 (Max): reward u(s,t), player 2 (Min): -u(s,t)

• Max goal: maximize u(s,t)

• Goal: find strategies s, t that do this.

Minimax Theorem

Famous result of von Neumann
• Says: there are strategies s* and t* and a value u*, the

minimax value so that
– If Min uses t*, then Max’s reward ≤u* (i.e., maxs u(s, t*) = u*)
– If Max uses s*, then Max’s reward ≥u* (i.e., mint u(s*, t) = u*)

• So: u(s*, t*) = u*
• Also: if game has perfect information, there are pure

strategies s*, t* that satisfy the result

Back to our game tree
• Write down all the pure strategies (e.g., the big tree) and

select the s* and t*

• Big search, since for branching factor b, height h, need to look
at ~bh strategies

Finding The Strategies

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max(- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- i) Min
+1

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

Game tree for II-Nim

(ii ii) Max

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

Game tree for II-Nim

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

(ii ii) Max
-1

Game tree for II-Nim

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

(ii ii) Max
-1

Game tree for II-Nim

(ii ii) Max
-1

(i ii) Min
-1

(- ii) Min
-1

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:
Max and Min

Max wants the largest score
Min wants the smallest score

The first player always loses, if the
second player plays optimally!

Game tree for II-Nim

Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2 moves.
Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?
• A. 23
• B. 65
• C. 41
• D. 2

Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?

• A. Always
• B. Sometimes
• C. Never

Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players play
optimally
– Max’s turn, take max of children
– Min’s turn, take min of children

• Can implement this as depth-first search: minimax algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state)
then return (terminal value of s)
else

α := – infinity
for each s’ in Succ(s)

α := max(α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else

β := infinity
for each s’ in Succs(s)

β := min(β , Max-value(s’))
return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

H
150

I
100

α=-¥

Minimax algorithm in execution

Minimax algorithm in execution
S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-¥

β=+¥

H
150

I
100

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-¥

β=200

H
150

I
100

The execution on the
terminal nodes is omitted.

Minimax algorithm in execution

S

A
100

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-¥

β=100

H
150

I
100

Minimax algorithm in execution

S

A
100

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=100

β=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

α=100

β=+¥A
100

C
200

D
100

H
150

I
100

Minimax algorithm in execution

Minimax algorithm in execution
S

B

E
120

F
20

max

min

max

min

G

β=120A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution
S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution
S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=-¥

Minimax algorithm in execution
S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150

Minimax algorithm in execution
S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150

Minimax algorithm in execution
S

B

E
120

F
20

max

min

max

min

G
150

β=20A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution
S

B
20

E
120

F
20

max

min

max

min

G
150

A
100

C
200

D
100

α=100

H
150

I
100

Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning
• Goal: want the same minimax value, but faster
• We can get rid of bad branches
• Same principle as quiz question

Alpha-beta pruning
function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)
if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succ(s)

α := max(α , Min-value(s’,α,β))
if (α ≥ β) then return β /* alpha pruning */

return α
function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succs(s)

β := min(β , Max-value(s’,α,β))
if (α ≥ β) then return α /* beta pruning */
return β

Starting from the root:
Max-Value(root, -¥, +¥)

How effective is alpha-beta pruning?

• Depends on the order of successors!

– Best case, the #of nodes to search is O(bm/2)

– Happens when each player's best move is the leftmost child.

– The worst case is no pruning at all.

• In DeepBlue, the average branching factor was about 6

with alpha-beta instead of 35-40 without.

Alpha-Beta Pruning

Minimax With Heuristics

Note that long games are yield huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

Heuristic Evaluation Functions

• e(x) often a weighted sum of features (like our linear models)

• Chess example: fi(x) = difference between number of white
and black, with i ranging over piece types.
– Set weights according to piece importance
– E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black

knights)

Going Further
• Monte Carlo tree search (MCTS)

– Uses random sampling of the search space
– Choose some children (heuristics to figure out #)
– Record results, use for future play
– Self-play

• AlphaGo and other big results!

Credit: Surag Nair

Summary

• Review of game theory
– Properties, Mathematical formulation for simultaneous

games Normal form, dominance, equilibria, mixed vs pure
• Sequential games
– Game trees, minimax value, minimax algorithm

• Improving our search
– Using heuristics, pruning, random search

Acknowledgements: Developed from materials by Fred Salad

and Yingyu Liang (University of Wisconsin), James Skrentny

(University of Wisconsin), inspired by Haifeng Xu (UVA) and

Dana Nau (University of Maryland).

