
CS 540 Introduction to Artificial Intelligence

Reinforcement Learning I

Yudong Chen
University of Wisconsin-Madison

Dec 2, 2021

Announcements

• Homeworks:

– HW9 due next Tue

– HW10 released

• Final: administrative details out soon

• Class roadmap:

– Today and next Tuesday: Reinforcement Learning

Outline

• Introduction to reinforcement learning

– Basic concepts, mathematical formulation, MDPs, policies

• Valuing policies

– Value functions, Bellman equation, value iteration

• Q-learning (time permitted)

– Q function, SARSA

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility

– Note: data consists of actions & observations
• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)

Examples: Gameplay Agents

AlphaGo:

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

Mnih et al, “Human-level control through deep reinforcement learning”

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We’ve Learned "

Example: Robotics + Puzzle Solving
OpenAI , “Solving Rubik's Cube with
a Robot Hand”, 2019

Building The Theoretical Model

Basic setup:

• Set of states, S

• Set of actions A

• Information: at time t, observe state st∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: action to take at a particular state.

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Back to MDP Setup

The formal mathematical model:

• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: action to take at a particular state.

How do we find
the best policy?

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value

• B. The policy maps states to actions

• C. The probability of next state can depend on current and
previous states

• D. The solution of MDP is to find a policy that maximizes the
cumulative rewards

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value

• B. The policy maps states to actions

• C. The probability of next state can depend on current and
previous states

• D. The solution of MDP is to find a policy that maximizes the
cumulative rewards

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value (True: need to be
able to compare)

• B. The policy maps states to actions (True: a policy tells you what
action to take for each state).

• C. The probability of next state can depend on current and
previous states (False: Markov assumption).

• D. The solution of MDP is to find a policy that maximizes the
cumulative rewards (True: want to maximize rewards overall).

Value Function

For policy , expected utility over all possible state
sequences from 𝑠0 produced by following that policy:

Called the value function (for , 𝑠0)

𝑉𝜋 𝑠0 = ෍

sequences
starting from 𝑠0

𝑃 sequence 𝑈(sequence)

Discounting Rewards

One issue: these are infinite series. Convergence?

• Solution

• Discount factor  between 0 and 1

– Set according to how important present is vs. future

– Note: has to be less than 1 for convergence

From Value to Policy

Now that 𝑉𝜋 𝑠0 is defined, what a should we take?

• First, set 𝑉∗ 𝑠 to be expected utility for optimal policy from s

• What’s the expected utility of an action?

– Specifically, action a in state s?

All the states we
could go to

Transition probability Expected rewards

Obtaining the Optimal Policy

We know the expected utility of an action.

• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s).

– But it was defined in terms of the optimal policy!

– So we need some other approach to get V*(s).

– Need some other property of the value function!

Bellman Equation

Let’s walk over one step for the value function:

• Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

Value Iteration

Q: how do we find V*(s)?

• Why do we want it? Can use it to get the best policy

• Know: reward r(s), transition probability P(s’|s,a)

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Value Iteration: Demo

Source: POMDPBGallery Julia Package

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1 / (1 -𝛾)

• C. 1 / (1 -𝛾2)

• D. 1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2)

• D. 1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2) (States: A,B,A,B,… rewards 1,0, 𝛾2,0, 𝛾4,0)

• D. 1

Q-Learning

What if we don’t know transition probability P(s’|s,a)?

• Need a way to learn to act without it.

• Q-learning: get an action-value function Q(s,a) that tells us
the value of doing a in state s

• Note: V*(s) = maxa Q(s,a)

• Now, we can just do 𝜋∗ 𝑠 = arg max𝑎𝑄 𝑠, 𝑎
– But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?

• Similar iterative procedure

• Idea: combine old value and new estimate of future value.

Learning rate

Exploration Vs. Exploitation

General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

• With some 0<ε<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

Q-Learning: SARSA

Using the epsilon-greedy policy, an alternative:

• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)

Learning rate

Break & Quiz

Q 3.1 What is the main difficulty in applying Q-learning with a discrete
Q-table to an environment with continuous numerical observations?

• A. We may not converge to the correct Q(s,a) values.

• B. It would take a potentially intractable amount of memory to
represent every possible Q(s,a) value in the discrete Q-table.

• C. Q-learning with a discrete Q-table can be applied to these
environments with no issues.

Break & Quiz

Q 3.1 What is the main difficulty in applying Q-learning with a discrete
Q-table to an environment with continuous numerical observations?

• A. We may not converge to the correct Q(s,a) values.

• B. It would take a potentially intractable amount of memory to
represent every possible Q(s,a) value in the discrete Q-table.

• C. Q-learning with a discrete Q-table can be applied to these
environments with no issues.

Summary

• Reinforcement learning setup

• Mathematica formulation: MDP

• Value functions & the Bellman equation

• Value iteration

• Q-learning

Acknowledgements: Based on slides from Fred Sala, Yin Li, Jerry Zhu, Svetlana

Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

