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Announcements

 Homeworks:
— HWO9 due next Tue
— HW10 released

* Final: administrative details out soon
e Class roadmap:

— Today and next Tuesday: Reinforcement Learning



Outline

* Introduction to reinforcement learning

— Basic concepts, mathematical formulation, MDPs, policies
* Valuing policies

— Value functions, Bellman equation, value iteration
* Q-learning (time permitted)

— Q function, SARSA
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 Agent receives a reward based on state of the world
— Goal: maximize reward / utility ($$9)
— Note: data consists of actions & observations

* Compare to unsupervised learning and supervised learning



Examples: Gameplay Agents
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Examples: Video Game Agents

Pong, Atari
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https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!
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Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"



Examples: Robotics

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "



Example: Robotics + Puzzle Solving

OpenAl, “Solving Rubik's Cube with
a Robot Hand”, 2019
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Building The Theoretical Model

Basic setup: ) >
Actions
* Set of states, S < m
] Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s,,, continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”



Markov Decision Process (MDP)

The formal mathematical model:

» State set S. Initial state s, Action set A
* State transition model: P(s;1]ss,a)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

* Reward function: r(s,)

* Policy: 7T<S) . S — A action to take at a particular state.
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Example of MDP: Grid World
‘[’L(AO: up ‘EC(,;) -~ r[jtvty } .
Robot on a grid; goal: find the best policy
7Tl )

Source: P. Abbeel and D. Klein



Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

i@i

r(s) = —0.04 for every
non-terminal state




Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast
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Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast
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Back to MDP Setup

The formal mathematical model:

* State set S. Initial state s, Action set A
* State transition model: P(s;1]ss,a)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

How do we find
* Reward function: r(s,) / tho best policy?

* Policy: 7T<S) . S — A action to take at a particular state.
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ao ai
Sop —> 81 —=> 89 — ...



Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value
* B. The policy maps states to actions

* C. The probability of next state can depend on current and
previous states

e D. The solution of MDP is to find a policy that maximizes the
cumulative rewards
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Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value (True: need to be
able to compare)

B. The policy maps states to actions (True: a policy tells you what
action to take for each state).

C. The probability of next state can depend on current and
previous states (False: Markov assumption).

D. The solution of MDP is to find a policy that maximizes the
cumulative rewards (True: want to maximize rewards overall).
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Discounting Rewards

One issue: these are infinite series. Convergence?
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* Discount factor y between 0 and 1
— Set according to how important present is vs. future
— Note: has to be less than 1 for convergence



From Value to Policy

Now that V™ (s,) is defined, what a should we take?
* First, set V*(s) to be expected utility for optimal policy from s

* What’s the expected utility of an action? 9"r V¥Cety  PUs\s )
X, ! ’
— Specifically, action a in state s? /é Ve ) P4 ]4.9)

ZP( 5 y \gv*cég’) Ps: 152)

Transition probability Expected rewards

All the states we
could go to



Obtaining the Optimal Policy

We know the expected utility of an action.

* So, to get the optimal policy, compute

m*(s) = argmax, ZP "|s,a)V*(s’

///

All the states we  Transition Expected
could go to probability rewards



Slight Problem...

Now we can get the optimal policy by doing

7 (s) = argmax, Z P(s'|s,a)V*(s)

S

 So we need to know V*(s).
— But it was defined in terms of the optimal policy!
— So we need some other approach to get V*(s).
— Need some other property of the value function!



Bellman Equation

Let’s walk over one step for the value function:

V*(s) =r(s) +fym3XZP(3’\s,a)V*(s’)

T\SY }

Current state Discounted expected
reward future rewards

e Bellman: inventor of dynamic programming
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Value lteration - |:
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Q: how do we find V*(s)? N
* Why do we want it? Can use it to get the best policy

RS

e Know: reward r(s), transition probability P(s’|s,a)
e Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Virr(s) = r(s) +ymax ) P(s']s,a)Vi(s') =~ V=
Vt(§) s’ 1/064/)



Value lteration: Demo
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Source: POMDPBGallery Julia Package



Break & Quiz

Q 2.1 Consider an MIDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let y be the discounting factor. Let i: m(A) = t(B) = move (i.e., an
“always move” policy). What is the value function V7*(A)?
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Q 2.1 Consider an MIDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let ybe the discounting factor. Let i: m(A) = (B) = move (i.e., an
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Break & Quiz

Q 2.1 Consider an MIDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let ybe the discounting factor. Let i: m(A) = (B) = move (i.e., an
“always move” policy). What is the value function V7*(A)?
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Q-Learning

What if we don’t know transition probability P(s’|s,a)?
* Need a way to learn to act without it.

* Q-learning: get an action-value function Q(s,a) that tells us
the value of doing a in state s

* Note: V*(s) = max, Q(s,0)

* Now, we can just do m*(s) = arg max,Q(s,a)

— But need to estimate Q!




Q-Learning lteration

How do we get Q(s,a)?

e Similar iterative procedure

Q(5¢,at) <+ Q(s¢,ar) + a[r(se) + Vm(?XQ(StH, a) — Q(st, at)]

/

Learning rate

* |dea: combine old value and new estimate of future value.



Exploration Vs. Exploitation

General question!
e Exploration: take an action with unknown consequences

— Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

— Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

— Pros:
* Maximize reward as reflected in the current utility estimates
e Avoid bad stuff

— Cons:
* Might also prevent you from discovering the true optimal strategy



Q-Learning: Epsilon-Greedy Policy

How to explore?

* With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax, 4 @(s,a) uniform(0,1) > €
a =
random a € A otherwise



Q-Learning: SARSA

Using the epsilon-greedy policy, an alternative:

e Just use the next action, no max over actions:

Q(st,at) + Q(s¢,a¢) + alr(ss) +7Q(St41, ap41) — Q(8t, at)]

Learning rate

e C(Called state—action—reward—state—action (SARSA)



Break & Quiz

Q 3.1 What is the main difficulty in applying Q-learning with a discrete
Q-table to an environment with continuous numerical observations?

* A. We may not converge to the correct Q(s,a) values.

e B. It would take a potentially intractable amount of memory to
represent every possible Q(s,a) value in the discrete Q-table.

* C.Q-learning with a discrete Q-table can be applied to these
environments with no issues.
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Summary

Reinforcement learning setup
Mathematica formulation: MDP
Value functions & the Bellman equation

Value iteration

Q-learning



s - :

e, L e e R
I it 0 T A e S S Rt TR e
ST N T 3 R B e S e B SN e o W By

Acknowledgements: Based on slides from Fred Sala, Yin Li, Jerry Zhu, Svetlana
Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein



