Announcements

• **Homeworks:**
 – HW9 due next Tue
 – HW10 released

• **Final:** administrative details out soon

• **Class roadmap:**
 – Today and next Tuesday: Reinforcement Learning
Outline

• Introduction to reinforcement learning
 – Basic concepts, mathematical formulation, MDPs, policies

• Valuing policies
 – Value functions, Bellman equation, value iteration

• Q-learning (time permitted)
 – Q function, SARSA
Back to Our General Model

We have an **agent interacting** with the **world**

- Agent receives a reward based on state of the world
 - **Goal**: maximize reward / utility ($$$)
 - **Note**: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning
Examples: Gameplay Agents

AlphaGo:

https://deepmind.com/research/alphago/
Examples: Video Game Agents

Pong, Atari

Mnih et al, “Human-level control through deep reinforcement learning”
Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"
Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, "How to Train Your Robot with Deep Reinforcement Learning – Lessons We’ve Learned"
Example: Robotics + Puzzle Solving

OpenAI, “Solving Rubik's Cube with a Robot Hand”, 2019
Building The Theoretical Model

Basic setup:
- Set of states, S
- Set of actions A
- Information: at time t, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1}, continue

Goal: find a map from states to actions maximize rewards.

A “policy”
Markov Decision Process (MDP)

The formal mathematical model:

- **State set** S. Initial state s_0. **Action set** A

- **State transition model**: $P(s_{t+1} | s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.

- **Reward function**: $r(s_t)$

- **Policy**: $\pi(s) : S \rightarrow A$ action to take at a particular state.
Example of MDP: Grid World

\(\pi(A1) = \text{up} , \quad \pi(C3) = \text{right} , \quad \ldots \)

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein
Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

\[r(s) = -0.04 \] for every non-terminal state
Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

\[r(s) = -0.04 \text{ for every non-terminal state} \]
Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

\[r(s) = -0.04 \text{ for every non-terminal state} \]
The formal mathematical model:

- **State set** \(S \). Initial state \(s_0 \). **Action set** \(A \)
- **State transition model**: \(P(s_{t+1} | s_t, a_t) \)
 - Markov assumption: transition probability only depends on \(s_t \) and \(a_t \), and not previous actions or states.
- **Reward function**: \(r(s_t) \)
- **Policy**: \(\pi(s) : S \rightarrow A \) action to take at a particular state.

How do we find the best policy?
Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value
• B. The policy maps states to actions
• C. The probability of next state can depend on current and previous states
• D. The solution of MDP is to find a policy that maximizes the cumulative rewards
Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value
• B. The policy maps states to actions
• C. The probability of next state can depend on current and previous states
• D. The solution of MDP is to find a policy that maximizes the cumulative rewards
Q 1.1 Which of the following statement about MDP is not true?

- A. The reward function must output a scalar value (True: need to be able to compare)
- B. The policy maps states to actions (True: a policy tells you what action to take for each state).
- C. The probability of next state can depend on current and previous states (False: Markov assumption).
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards (True: want to maximize rewards overall).
Value Function

For policy \(\pi \), the expected utility over all possible state sequences from \(s_0 \) produced by following that policy:

\[
V^\pi(s_0) = \sum_{\text{sequences starting from } s_0} P(\text{sequence})U(\text{sequence})
\]

Called the value function (for \(\pi, s_0 \))
Discounting Rewards

One issue: these are infinite series. Convergence?

• Solution

\[U(s_0, s_1 \ldots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \ldots = \sum_{t \geq 0} \gamma^t r(s_t) \]

• Discount factor \(\gamma \) between 0 and 1
 – Set according to how important present is vs. future
 – Note: has to be less than 1 for convergence
Now that \(V^\pi(s_0) \) is defined, what \(a \) should we take?

- First, set \(V^*(s) \) to be expected utility for **optimal** policy from \(s \).
- What’s the expected utility of an action?
 - Specifically, action \(a \) in state \(s \)?

\[
\sum_{s'} P(s' \mid s, a) V^*(s')
\]
Obtaining the Optimal Policy

We know the expected utility of an action.

• So, to get the optimal policy, compute

\[\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s,a)V^*(s') \]

All the states we could go to Transition probability Expected rewards
Slight Problem...

Now we can get the optimal policy by doing

$$\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s, a)V^*(s')$$

- So we need to know $V^*(s)$.
 - But it was defined in terms of the optimal policy!
 - So we need some other approach to get $V^*(s)$.
 - Need some other property of the value function!
Bellman Equation

Let’s walk over one step for the value function:

\[V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V^*(s') \]

- Bellman: inventor of dynamic programming

Current state reward

Discounted expected future rewards
Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward $r(s)$, transition probability $P(s'|s,a)$
- Also know $V^*(s)$ satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s,a)V_i(s')$$

$$V_i(s)$$

$$V_0(s)$$
Value Iteration: Demo

Value iteration step 1

Source: POMDPBGallery Julia Package
Q 2.1 Consider an MDP with 2 states \{A, B\} and 2 actions: “stay” at current state and “move” to other state. Let \(r \) be the reward function such that \(r(A) = 1, r(B) = 0 \). Let \(\gamma \) be the discounting factor. Let \(\pi: \pi(A) = \pi(B) = \text{move} \) (i.e., an “always move” policy). What is the value function \(V^\pi(A) \)?

- A. 0
- B. \(1 / (1 - \gamma) \)
- C. \(1 / (1 - \gamma^2) \)
- D. 1
Q 2.1 Consider an MDP with 2 states \{A, B\} and 2 actions: “stay” at current state and “move” to other state. Let \(r\) be the reward function such that \(r(A) = 1, r(B) = 0\). Let \(\gamma\) be the discounting factor. Let \(\pi: \pi(A) = \pi(B) = \text{move}\) (i.e., an “always move” policy). What is the value function \(V^\pi(A)\)?

- A. 0
- B. \(1/(1-\gamma)\)
- C. \(1/(1-\gamma^2)\)
- D. 1
Q 2.1 Consider an MDP with 2 states \{A, B\} and 2 actions: “stay” at current state and “move” to other state. Let \(r \) be the reward function such that \(r(A) = 1, r(B) = 0 \). Let \(\gamma \) be the discounting factor. Let \(\pi: \pi(A) = \pi(B) = \text{move} \) (i.e., an “always move” policy). What is the value function \(V_\pi(A) \)?

- A. 0
- B. \(1/(1-\gamma) \)
- C. \(1/(1-\gamma^2) \) (States: A,B,A,B,... rewards 1,0, \(\gamma^2 \),0, \(\gamma^4 \),0)
- D. 1
Q-Learning

What if we don’t know transition probability $P(s' | s, a)$?

• Need a way to learn to act without it.
• **Q-learning**: get an action-value function $Q(s, a)$ that tells us the value of doing a in state s
• Note: $V^*(s) = \max_a Q(s, a)$
• Now, we can just do $\pi^*(s) = \arg \max_a Q(s, a)$
 – But need to estimate Q!
Q-Learning Iteration

How do we get $Q(s, a)$?

• Similar iterative procedure

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r(s_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Learning rate

• **Idea**: combine old value and new estimate of future value.
Exploration Vs. Exploitation

General question!

• **Exploration**: take an action with unknown consequences
 - **Pros**:
 • Get a more accurate model of the environment
 • Discover higher-reward states than the ones found so far
 - **Cons**:
 • When exploring, not maximizing your utility
 • Something bad might happen

• **Exploitation**: go with the best strategy found so far
 - **Pros**:
 • Maximize reward as reflected in the current utility estimates
 • Avoid bad stuff
 - **Cons**:
 • Might also prevent you from discovering the true optimal strategy
Q-Learning: Epsilon-Greedy Policy

How to explore?

- With some $0 < \varepsilon < 1$ probability, take a random action at each state, or else the action with highest $Q(s,a)$ value.

$$a = \begin{cases} \arg\max_{a \in A} Q(s,a) & \text{uniform}(0, 1) > \varepsilon \\ \text{random } a \in A & \text{otherwise} \end{cases}$$
Q-Learning: SARSA

Using the epsilon-greedy policy, an alternative:

• Just use the next action, no max over actions:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t) + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)] \]

Learning rate

• Called state–action–reward–state–action (SARSA)
Q 3.1 What is the main difficulty in applying Q-learning with a discrete Q-table to an environment with continuous numerical observations?

• A. We may not converge to the correct $Q(s,a)$ values.
• B. It would take a potentially intractable amount of memory to represent every possible $Q(s,a)$ value in the discrete Q-table.
• C. Q-learning with a discrete Q-table can be applied to these environments with no issues.
Q 3.1 What is the main difficulty in applying Q-learning with a discrete Q-table to an environment with continuous numerical observations?

• A. We may not converge to the correct $Q(s,a)$ values.

• B. It would take a potentially intractable amount of memory to represent every possible $Q(s,a)$ value in the discrete Q-table.

• C. Q-learning with a discrete Q-table can be applied to these environments with no issues.
Summary

• Reinforcement learning setup
• Mathematica formulation: MDP
• Value functions & the Bellman equation
• Value iteration
• Q-learning
Acknowledgements: Based on slides from Fred Sala, Yin Li, Jerry Zhu, Svetlana Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein