

CS 540 Introduction to Artificial Intelligence Reinforcement Learning II

Yudong Chen University of Wisconsin-Madison

Dec 7, 2021

Announcements

- Couse evaluation survey
- Homework:
 - HW10 due next Tuesday (before last class)
- Final exam: Dec 20, 2:45-4:45pm, online
- Class roadmap:
 - Today: Reinforcement Learning II
 - Thursday: Review on search, games, RL
 - Next Tuesday: Ethics and Trust in AI

Outline

• Review of reinforcement learning

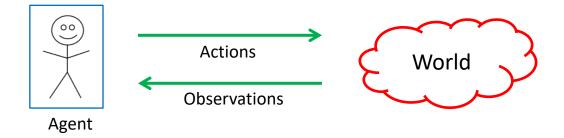
– MDPs, value functions, value iteration

- Q-learning
 - Q function, SARSA, deep Q-learning

Building The Theoretical Model

Basic setup:

- Set of states, S
- Set of actions A



- Information: at time *t*, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from **states to actions** maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model:

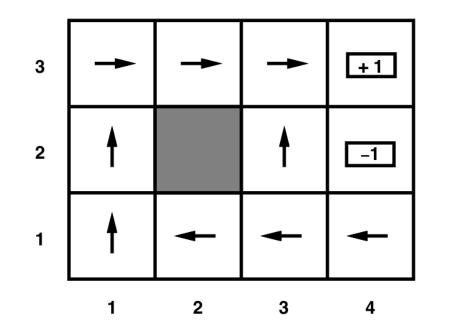
- State set S. Initial state s_{0.} Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: **r**(s_t)
- **Policy**: $\pi(s) : S \to A$ action to take at a particular state.

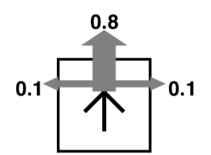
$$s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{1}} s_{2} \xrightarrow{a_{2}} \dots$$

$$r(s) \quad r(\varsigma) \quad r(\varsigma)$$

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast





r(s) = -0.04 for every non-terminal state

Defining the Optimal Policy

For policy π , **expected utility** over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) =$$

P(sequence)*U*(sequence)

sequences starting from s_0

Called the value function (for π , s_0)

Discounting Rewards

One issue: these are infinite series. **Convergence**?

• Solution

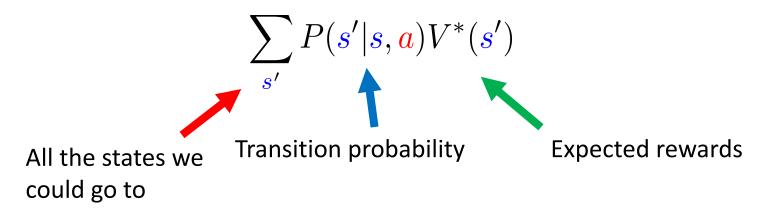
$$U(s_0, s_1...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + ... = \sum_{t \ge 0} \gamma^t r(s_t)$$

- Discount factor γ between 0 and 1
 - Set according to how important present is VS future
 - Note: has to be less than 1 for convergence

Values and Policies

Now that $V^{\pi}(s_0)$ is defined what *a* should we take?

- First, set V*(s) to be expected utility for **optimal** policy from s
- What's the expected utility of an action?
 - Specifically, action a in state s?

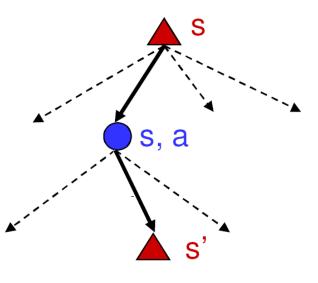


Obtaining the Optimal Policy

We know the expected utility of an action.

• So, to get the optimal policy, compute

$$\pi^{*}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) V^{*}(s')$$
All the states we could go to probability rewards



Bellman Equation

Let's walk over one step for the value function:

$$V^{*}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^{*}(s')$$
Current state reward Discounted expected future rewards

• Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s)=0$, $\forall s$. Then update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s') \qquad \forall s.$$

$$S = \{A, B\}$$

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_{i}(s')$$

$$i = 0, \quad V_{0}(A) = 0, \quad V_{0}(B) = 0, \quad V_{0}(B) = 0, \quad S' = B$$

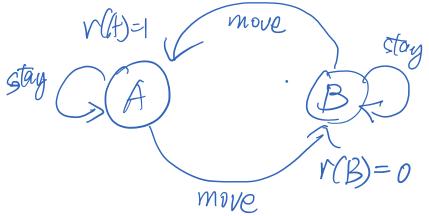
$$V_{i}(A) = r(A) + \gamma \max_{a} \{P(A|A, a) V_{0}(A) + P(B|A, a) V_{0}(B)\}$$

$$V_{i}(B) = r(B) + \gamma \max_{a} \{P(A|B, a) V_{0}(A) + P(B|B, a) V_{0}(B)\}$$

i=2:

Q 1.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. What is the optimal policy $\pi(A)$ and $\pi(B)$? What are $V^*(A)$, $V^*(B)$?

- A. Stay, Stay, 1/(1-γ), 1
- B. Stay, Move, 1/(1-γ), 1/(1-γ)
- C. Move, Move, 1/(1-γ), 1
- D. Stay, Move, $1/(1-\gamma)$, $\gamma/(1-\gamma)$ $V^{*}(A) = 1 + \gamma + \gamma^{2} + \cdots = \frac{1}{1-\gamma}$ $V^{*}(B) = 0 + \gamma + \gamma^{2} + \cdots = \frac{1}{1-\gamma}$



Q 1.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. What is the optimal policy $\pi(A)$ and $\pi(B)$? What are $V^*(A)$, $V^*(B)$?

- A. Stay, Stay, 1/(1-γ), 1
- B. Stay, Move, 1/(1-γ), 1/(1-γ)
- C. Move, Move, 1/(1-γ), 1
- D. Stay, Move, 1/(1-γ), γ/(1-γ)

Q 1.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. What is the optimal policy $\pi(A)$ and $\pi(B)$? What are $V^*(A)$, $V^*(B)$?

- A. Stay, Stay, 1/(1-γ), 1
- B. Stay, Move, 1/(1-γ), 1/(1-γ)
- C. Move, Move, 1/(1-γ), 1
- D. Stay, Move, 1/(1-γ), γ/(1-γ) Note: want to stay at A, if at B, move to A. Starting at A, sequence A,A,A,... rewards 1, γ, γ²,.... Start at B, sequence B,A,A,... rewards 0, γ, γ²,.... Sums to 1/(1-γ), γ/(1-γ).

 $\max_{a} \sum_{r(s) + \ell} \sum_{s', P(s'|s, a)} V^{*}(s')$ What if we don't know transition probability P(s'|s, a)?

• Need a way to learn to act without it.

Q (5,a

- **Q-learning**: get an action-value function Q(*s*,*a*) that tells us the value of doing *a* in state *s*
- Note: $V^*(s) = \max_a Q(s, a)$
- Now, we can just do $\pi^*(s) = \arg \max_a Q(s, a)$
 - But need to estimate Q!

Q-Learning Iteration

How do we get
$$Q(s,a)$$
?
• Similar iterative procedure of value (s_t, a_t)
 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t) + \gamma \max Q(s_{t+1}, a) - Q(s_t, a_t)]$
 $= (t-d) Q(s_t, a_t) + \alpha[r(s_t) + \gamma \max Q(s_{t+1}, a) - Q(s_t, a_t)]$
Learning rate

Idea: combine old value and new estimate of future value. Note: We are using a policy to take actions; based on Q!

Exploration Vs. Exploitation

General question!

- **Exploration:** take an action with unknown consequences
 - Pros:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far
 - Cons:
 - When exploring, not maximizing your utility
 - Something bad might happen
- Exploitation: go with the best strategy found so far
 - Pros:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - Cons:
 - Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to **explore**?

 With some 0<ε<1 probability, take a random action at each state, or else the action with highest Q(s,a) value.

Q-Learning: SARSA

An alternative: Learning rate

• Just use the next action, no max over actions:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t) + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

$$Compare \stackrel{\text{\tiny{tr}}}{Q} \text{ learning}$$

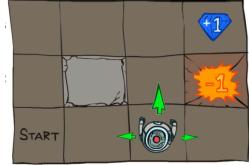
$$Q(\varsigma_t, A_t) \leftarrow Q(\varsigma_t, a_t) + \alpha \max [r(\varsigma_t) + \delta(Q\varsigma_{t+1}, a_t) - Q(\varsigma_t, a_t)]$$

- Called state—action—reward—state—action (SARSA)
- Can use with epsilon-greedy policy

Q-Learning Details

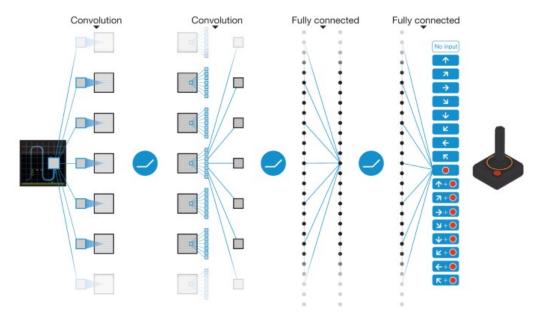
Note: if we have a **terminal** state, the process ends

- An **episode**: a sequence of states ending at a terminal state
- Want to run on many episodes
- Slightly different Q-update for terminal states (see homework!)



Deep Q-Learning

How do we get Q(*s*,*a*)?



Mnih et al, "Human-level control through deep reinforcement learning"

Q 2.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Perform exploitation instead of exploration.

Q 2.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Perform exploitation instead of exploration.

Q 2.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations. (No: this is dependent on the particular problem, not a general constant).
- C. Re-start with different random initial table values. (No: this is not necessary in general).
- D. Perform exploitation instead of exploration. (No: insufficient exploration means potentially unupdated state action pairs).

Summary of RL

- Reinforcement learning setup
- Mathematical formulation: MDP
- Value functions & the Bellman equation
- Value iteration
- Q-learning

Acknowledgements: Based on slides from Fred Sala, Yin Li, Jerry Zhu, Svetlana Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein