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Announcements
• Couse evaluation survey

• Homework: 
– HW10 due next Tuesday (before last class)

• Final exam: Dec 20, 2:45-4:45pm, online

• Class roadmap:
– Today: Reinforcement Learning II
– Thursday: Review on search, games, RL
– Next Tuesday: Ethics and Trust in AI 



Outline

• Review of reinforcement learning
– MDPs, value functions, value iteration

• Q-learning
– Q function, SARSA, deep Q-learning



Building The Theoretical Model

Basic setup:
• Set of states, S

• Set of actions A

• Information: at time t, observe state st∈ S. Get reward rt
• Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.
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Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at, 
and not previous actions or states. 

• Reward function: r(st)
• Policy:                            action to take at a particular state. 



Grid World Optimal Policy

Note: (i) Robot is unreliable    (ii) Reach target fast

!(#) = −0.04 for every 
non-terminal state



Defining the Optimal Policy

For policy p, expected utility over all possible state 
sequences from !" produced by following that policy:

Called the value function (for p, !")
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Discounting Rewards

One issue: these are infinite series. Convergence?
• Solution

• Discount factor g between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence



Values and Policies

Now that !" #$ is defined what a should we take? 
• First, set V*(s) to be expected utility for optimal policy from s
• What’s the expected utility of an action?
– Specifically, action a in state s?

All the states we 
could go to

Transition probability Expected rewards



Obtaining the Optimal Policy

We know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we 
could go to

Transition 
probability 

Expected 
rewards

Credit L. Lazbenik



Bellman Equation

Let’s walk over one step for the value function:

• Bellman: inventor of dynamic programming

Discounted expected 
future rewards

Current state 
reward



Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy

• Know: reward r(s), transition probability P(s’|s,a)

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0, ∀s. Then update





Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current 
state and “move” to  other state. Let r be the reward function such that r(A) = 
1, r(B) = 0. Let ! be the discounting factor. What is the optimal policy "(A) 
and "($)? What are &*('), &*(B)?

• A. Stay, Stay, 1/(1-!), 1

• B. Stay, Move, 1/(1-!), 1/(1-!)
• C. Move, Move, 1/(1-!), 1

• D. Stay, Move, 1/(1-!), !/(1-!)
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Break & Quiz
Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current state 
and “move” to  other state. Let r be the reward function such that r(A) = 1, r(B) = 
0. Let ! be the discounting factor. What is the optimal policy "(A) and "($)? 
What are &*('), &*(B)?

• A. Stay, Stay, 1/(1-!), 1
• B. Stay, Move, 1/(1-!), 1/(1-!)
• C. Move, Move, 1/(1-!), 1
• D. Stay, Move, 1/(1-!), !/(1-!) Note: want to stay at A, if at B, move 

to A. Starting at A, sequence A,A,A,… rewards 1, !, !2,…. Start at B, 
sequence B,A,A,… rewards 0, !, !2,…. Sums to 1/(1-!), !/(1-!). 



Q-Learning

What if we don’t know transition probability P(s’|s,a)?
• Need a way to learn to act without it.

• Q-learning: get an action-value function Q(s,a) that tells us 
the value of doing a in state s

• Note: V*(s) = maxa Q(s,a)

• Now, we can just do !∗ # = arg max*+ #, -
– But need to estimate Q!



Q-Learning Iteration

How do we get Q(s,a)?
• Similar iterative procedure

Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on Q!

Learning rate



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons: 
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons: 
• Might also prevent you from discovering the true optimal strategy



Q-Learning: Epsilon-Greedy Policy

How to explore?

• With some 0<ε<1 probability, take a random action at each 

state, or else the action with highest Q(s,a) value.



Q-Learning: SARSA

An alternative:
• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)
• Can use with epsilon-greedy policy 

Learning rate



Q-Learning Details

Note: if we have a terminal state, the process ends
• An episode: a sequence of states ending at a terminal state
• Want to run on many episodes
• Slightly different Q-update for terminal states (see 

homework!)



Deep Q-Learning

How do we get Q(s,a)?

Mnih et al, "Human-level control through deep reinforcement learning"



Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action

• B. Perform at least 20,000 iterations.

• C. Re-start with different random initial table values.

• D. Perform exploitation instead of exploration.
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Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations. (No: this is dependent on the 

particular problem, not a general constant).
• C. Re-start with different random initial table values. (No: this is not 

necessary in general).
• D. Perform exploitation instead of exploration. (No: insufficient 

exploration means potentially unupdated state action pairs).



Summary of RL

• Reinforcement learning setup
• Mathematical formulation: MDP
• Value functions & the Bellman equation
• Value iteration
• Q-learning
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