
CS 540 Introduction to Artificial Intelligence
Reinforcement Learning II

Yudong Chen
University of Wisconsin-Madison

Dec 7, 2021

Announcements
• Couse evaluation survey

• Homework:
– HW10 due next Tuesday (before last class)

• Final exam: Dec 20, 2:45-4:45pm, online

• Class roadmap:
– Today: Reinforcement Learning II
– Thursday: Review on search, games, RL
– Next Tuesday: Ethics and Trust in AI

Outline

• Review of reinforcement learning
– MDPs, value functions, value iteration

• Q-learning
– Q function, SARSA, deep Q-learning

Building The Theoretical Model

Basic setup:
• Set of states, S

• Set of actions A

• Information: at time t, observe state st∈ S. Get reward rt
• Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at,
and not previous actions or states.

• Reward function: r(st)
• Policy: action to take at a particular state.

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

!(#) = −0.04 for every
non-terminal state

Defining the Optimal Policy

For policy p, expected utility over all possible state
sequences from !" produced by following that policy:

Called the value function (for p, !")

#$!" = &
'()*(+,('

'-./-0+1 2/34 56

7 sequence >(sequence)

Discounting Rewards

One issue: these are infinite series. Convergence?
• Solution

• Discount factor g between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence

Values and Policies

Now that !" #$ is defined what a should we take?
• First, set V*(s) to be expected utility for optimal policy from s
• What’s the expected utility of an action?
– Specifically, action a in state s?

All the states we
could go to

Transition probability Expected rewards

Obtaining the Optimal Policy

We know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards Credit L. Lazbenik

Bellman Equation

Let’s walk over one step for the value function:

• Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy

• Know: reward r(s), transition probability P(s’|s,a)

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0, ∀s. Then update

Break & Quiz

Q 1.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let ! be the discounting factor. What is the optimal policy "(A)
and "($)? What are &*('), &*(B)?

• A. Stay, Stay, 1/(1-!), 1

• B. Stay, Move, 1/(1-!), 1/(1-!)
• C. Move, Move, 1/(1-!), 1

• D. Stay, Move, 1/(1-!), !/(1-!)

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
• Need a way to learn to act without it.

• Q-learning: get an action-value function Q(s,a) that tells us
the value of doing a in state s

• Note: V*(s) = maxa Q(s,a)

• Now, we can just do !∗ # = arg max*+ #, -
– But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?
• Similar iterative procedure

Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on Q!

Learning rate

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

• With some 0<ε<1 probability, take a random action at each

state, or else the action with highest Q(s,a) value.

Q-Learning: SARSA

An alternative:
• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)
• Can use with epsilon-greedy policy

Learning rate

Q-Learning Details

Note: if we have a terminal state, the process ends
• An episode: a sequence of states ending at a terminal state
• Want to run on many episodes
• Slightly different Q-update for terminal states (see

homework!)

Deep Q-Learning

How do we get Q(s,a)?

Mnih et al, "Human-level control through deep reinforcement learning"

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action

• B. Perform at least 20,000 iterations.

• C. Re-start with different random initial table values.

• D. Perform exploitation instead of exploration.

Summary of RL

• Reinforcement learning setup
• Mathematical formulation: MDP
• Value functions & the Bellman equation
• Value iteration
• Q-learning

Acknowledgements: Based on slides from Fred Sala, Yin Li, Jerry Zhu, Svetlana
Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

