

CS 540 Introduction to Artificial Intelligence Review for Search, Game and RL

Yudong Chen University of Wisconsin-Madison

Announcements

Please fill out couse evaluation survey

- Homework:
 - HW10 due next Tuesday (before last class)
- **Final exam:** Dec 20, 2:45-4:45pm, online
- Class roadmap:
 - Today: Demonstration for RL; Review on search, games, RL
 - Next Tuesday: Ethics and Trust in Al

Demonstration: GridWorld

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 ♦B1		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 B 3	0.00 ♦B !	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 ★ G	0.00 ♦B 0 R-1.0	0.00	0.00 AB	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 B	0.00
0.00	0.00	0.00	0.00 AB2		0.00 B 4	0.00 ♦B :	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Note:

- Transition is deterministic (robot moves exactly as told)
- Game does not terminate
 - Reaching B's: pay -1 and game continues
 - Reaching G: get +1 and robot teleports to initial state A
- Discount factor = 0.9

What do optimal value/policy look like?

Let's guess:

- Optimal route?
- $V^*(\mathbf{B8})$ vs $V^*(\mathbf{B9})$? $V^*(\mathcal{B9}) < V^*(\mathcal{B9})$
- $V^*(\mathbf{A}) = 0.22$. Then $V^*(\mathbf{G}) = ?$
- $V^*(\mathbf{B3}) \approx ?$
- If reward(B3) changes to -0.5, should we go through it?

$$= |.198 \times |.2$$

$$V^{*}(G) = 1 + 0.9 \times V^{*}(A) = |+0.9 \times 0.22$$

$$= 1 + 0.9 (PA) - V^{*}(A) + P(s) \cdot V^{*}(s) + ...$$

What do optimal value/policy look like?

0.22 A	0.25	0.27	0.31 +	0.34	0.38	0.34 _	0.31 ★	0.34	0.38
0.25	0.27	0.31	0.34	0.38	0.42	0.38	0.34	0.38	0.42
0.2					0.46				0.46
0.20	0.22	0.25	-0.78 ↑ B1		0.52	0.57	0.64	0.57 ★	0.52 ★
0.22	0.25	0.27	0.25 +		0.08 R-1.	-0.36 - B5 R-1.0	0.71	0.64	0.57
0.25	0.27	0.31	0.27		1.20 ← G R 1.0	0.08 ← B6 R-1.0	0.79	-0.29 B8 R -1.0	0.52
0.27	0.31	0.34	0.31		1.0β	0.97	0.87	-0.21 ⊕ B9 R -1.0	0.57
0.31	0.34	0.38	-0.58 B2 R -1. ♦		-0. 43 B4	-0. †3 B7	0.7	0.71	0.64
0.34	0.38	0.42	0.46	0.52	0.57	0.64	0.7	0.64	0.57
0.31	0.34	0.38	0.42	0.46	0.52	0.57	0.6	0.57	0.52

Truth:

- Optimal route (see left)
- $V^*(\mathbf{B8}) = -0.28 < -0.21 = V^*(\mathbf{B9})$
- $V^*(\mathbf{A}) = 0.22$. Then $V^*(\mathbf{G}) = \mathbf{1}.20$
- $V^*(\mathbf{B3}) = \mathbf{0.08}$ (close to 0)
- If reward(B3) changes to -0.5, we should go through B3.

Visualization of Q Learning and ϵ -Greedy

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

- "Reinit agent" resets the board
- "Toggle TD Learning" starts or stops the agent running

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
t,	₩	₩	₩	₩	*	₩	*	₩	↑
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 R -1.0		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 ♣ R-1.0	0.00 R -1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 R 1.0	0.00 ♠ R -1.0	0.00	0.00 ♣	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 ♠ R -1.0	0.00
0.00	0.00	0.00	0.00 ♠ R-1.0		0.00 ♦ R-1.0	0.00 ♠ R -1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Review: Outline

- Search
 - Uninformed vs Informed
 - Optimization
- Games
 - Game theory basics, dominant strategy, equilibrium
 - Minimax search
- Reinforcement Learning
 - MDPs, value iteration, Q-learning

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost g(s) from start to node s
- Successors.

goal

Informed search. Know:

- All uninformed search properties, plus
- Heuristic h(s) from s to goal (recall game heuristic)

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

Search like BFS, fringe like DFS

Properties:

- Complete
- Optimal (if edge cost 1)
- Time $O(b^d)$
- Space O(bd)

Preferred algorithm for uninformed search

Performance of Search Algorithms on Trees

b: branching factor (assume finite)

d: goal depth

m: graph depth

	Complete	optimal	time	space
Breadth-first search	Υ	Y, if ¹	O(bd)	O(b ^d)
Uniform-cost search ²	Y	Υ	O(b ^{C*/ε})	O(b ^{C*/ε})
Depth-first search	N	N	O(b ^m)	O(bm)
Iterative deepening	Υ	Y, if ¹	O(bd)	O(bd)

- 1. edge cost constant, or positive non-decreasing in depth
- 2. edge costs $\geq \varepsilon > 0$. C* is the best goal path cost.

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement

• Demand that $h(s) \leq h^*(s)$

- If heuristic has this property, "admissible"
 - Optimistic! Never over-estimates

- Still need h(s) ≥ 0
 - Negative heuristics can lead to strange behavior

Search vs. Optimization

Before: wanted a path from start state to goal state

Uninformed search, informed search

New setting: optimization

- States s have values f(s)
- Want: s with optimal value f(s) (i.e, optimize over states)
- Challenging setting: too many states for previous search approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm

Pseudocode:

- 1. Pick initial state s
- 2. Pick t in **neighbors**(s) with the largest f(t)
- 3. if $f(t) \le f(s)$ THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

What could happen? Local optima!

Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?

Simulated Annealing

A more sophisticated optimization approach.

- Idea: move quickly at first, then slow down
- Pseudocode:

```
Pick initial state x

For k = 0 through k_{max}:

Reduce temperature T

Pick a random neighbour, y \leftarrow neighbor(x)

If f(y) \ge f(x), then x \leftarrow y

Else, with prob. P(f(x), f(y), T) then x \leftarrow y

Output: the final state x
```

Simulated Annealing: Picking Probability

 $P(x, y, T) = \exp\left(-\frac{|f(x) - f(y)|}{T}\right)$

How do we pick probability *P*?

- Decrease with gap |f(x) f(y)|
- Decrease with time k

- Temperature *T* cools over time
 - High temperature, accept any y
 - Low temperature, behaves like hill-climbing
 - Still, |f(x) f(y)| plays a role: if big, replacement probability low.

Genetic Algorithms

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

E.g., analogous to natural selection, cross-over, and mutation

Games Setup

Games setup: multiple agents

Strategic decision making.

Modeling Games: Properties

Let's work through **properties** of games

- Number of agents/players
- State & action spaces: discrete or continuous
- Finite or infinite
- Deterministic or random
- Sum: zero or positive or negative
- Sequential or simultaneous

Simultaneous Games: Normal Form

- *n* players {1,2,...,*n*}
- Player *i* strategy a_i from A_i .
 - Strategy of **all** players: $a = (a_1, a_2, ..., a_n)$
- Player i gets rewards $u_i(a)$ for any outcome
 - Note: reward depends on other players!

Player 2	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

Dominant Strategies and Equilibria

• a_i is **dominant** if a_i better than a_i regardless of what other players do

$$u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}) \forall a_i' \ne a_i \text{ and } \forall a_{-i}$$

• $a^* = (a_1^*, ..., a_n^*)$ is an **equilibrium** if all the players do not have an incentive to *unilaterally deviate*

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

• A mixed strategy $x^* = (x_1^*, ..., x_n^*)$ is a Nash equilibrium if

$$u_i(x_i^*, x_{-i}^*) \ge u_i(x_i, x_{-i}^*) \quad \forall x_i \in \Delta_{A_i}, \forall i \in \{1, \dots, n\}$$

Dominant Strategies and Equilibria

- Dominant strategies ⇒ (Pure) Equilibrium ⇒ NE
 - Not the other way around

NE always exists. Not necessarily for the other two

Sequential Games

More complex games with multiple moves

- Instead of normal form, extensive form
- Represent with a tree
- Perform search over the tree

- Can still look for Nash equilibrium
 - Or, other criteria like maximin / minimax

Minimax Value and Strategies

Let's stick to zero-sum two-player games

 Write down all the pure strategies (e.g., the big tree) and select the s* and t*

$$s^* = \arg\max_{s \in S} \min_{t \in T} u(s, t) \qquad t^* = \arg\min_{t \in T} \max_{s \in S} u(s, t)$$

• Can implement this as depth-first search: minimax algorithm

Minimax Search with α - β pruning

```
function Max-Value (s,\alpha,\beta)
inputs:
       s: current state in game, Max about to play
      α: best score (highest) for Max along path to s β: best score (lowest) for Min along path to s
output: min(β, best-score (for Max) available from s)
       if ( s is a terminal state )
      then return (terminal value of s) else for each s' in Succ(s)
        \alpha := \max(\alpha, \frac{\text{Min-value}}{\text{Min-value}}(s', \alpha, \beta))
if (\alpha \ge \beta) then return \beta /* alpha pruning */
       return α
function Min-Value(s,\alpha,\beta)
output: max(\alpha, best-score (for Min) available from s)
       if (s is a terminal state)
      then return ( terminal value of s) else for each s' in Succs(s) \beta := \min(\beta, \frac{Max-value}{s',\alpha,\beta}) if (\alpha \ge \beta) then return \alpha /* beta pruning */
       return B
```

Starting from the root: Max-Value(root, $-\infty$, $+\infty$)

Minimax Search with Heuristics

- Long games are yield huge computation
- To deal with this: limit **d** for the search depth
- Q: What to do at depth d, but no termination yet?
 - A: Use a heuristic evaluation function e(x)

```
function MINIMAX(x,d) returns an estimate of x's utility value inputs: x, current state in game d, an upper bound on the search depth if x is a terminal state then return Max's payoff at x else if d=0 then return e(x) else if it is Max's move at x then return \max\{\text{MINIMAX}(y,d-1): y \text{ is a child of } x\} else return \min\{\text{MINIMAX}(y,d-1): y \text{ is a child of } x\}
```

Credit: Dana Nau

Reinforcement Learning

Basic setup:

- Set of states, S
- Set of actions A

- Information: at time t, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from states to actions maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model:

- State set S. Initial state s₀. Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: $r(s_t)$
- **Policy**: $\pi(s):S\to A$ action to take at a particular state.

$$s_0 \xrightarrow{\mathbf{a}_0} s_1 \xrightarrow{\mathbf{a}_1} s_2 \xrightarrow{\mathbf{a}_2} \dots$$

Value function

The **value function** for policy π at state s_0 is the **expected utility** over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) = \sum_{\substack{\text{sequence} \\ \text{starting from } s_0}} P(\text{sequence}) U(\text{sequence})$$

where the utility of a sequence is its corresponding **discounted** cumulative reward: $\gamma \in (0,1)$: discount factor

cumulative reward:
$$U(s_0,s_1\ldots)=r(s_0)+\gamma r(s_1)+\gamma^2 r(s_2)+\ldots=\sum_{t\geq 0}\gamma^t r(s_t)$$

Bellman Equation

- Set $V^*(s)$ to be value function for **optimal** policy.
- V*(s) satisfies the Bellman Equation: for all s,

Value Iteration

Q: How do we find $V^*(s)$?

- Know: reward r(s), transition probability P(s'|s,a)
- Also know V*(s) satisfies Bellman equation

A: Start with $V_0(s)=0$, $\forall s$. Then for all s, update

$$V_{i+1}(s) = r(s) + \gamma \max_{\mathbf{a}} \sum_{s'} P(s'|s, \mathbf{a}) V_i(s')$$

From Optimal Value to Optimal Policy

Now that $V^*(s_0)$ is known, what α should we take?

What's the expected utility of an action a in state s?

So, to get the optimal policy, compute

$$\pi^*(s) = \operatorname{argmax}_{\mathbf{a}} \sum_{s'} P(s'|s, \mathbf{a}) V^*(s')$$

Q-Learning

What if we don't know transition probability P(s'|s,a)?

- **Q-learning**: get an action-value function Q(s,a) that tells us the value of doing a in state s
- How do we get Q(s,a)? Similar iterative procedure:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$
 Learning rate

SARSA

An alternative:

• Just use the next action, no max over actions:

$$Q(s_t, \mathbf{a}_t) \leftarrow Q(s_t, \mathbf{a}_t) + \alpha[r(s_t) + \gamma Q(s_{t+1}, \mathbf{a}_{t+1}) - Q(s_t, \mathbf{a}_t)]$$
Learning rate

Called state—action—reward—state—action (SARSA)

Epsilon-Greedy Policy

Need to balance exploitation and exploration

• With some $0<\epsilon<1$ probability, take a random action at each state, or else the action with highest Q(s,a) value.

$$a = \begin{cases} \operatorname{argmax}_{\mathbf{a} \in A} Q(\mathbf{s}, \mathbf{a}) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} \mathbf{a} \in A & \text{otherwise} \end{cases}$$

Can be used in Q Learning and SARSA

Acknowledgements: Based on slides from Fred Sala, Yin Li, Jerry Zhu, Svetlana Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein