
CS 540 Introduction to Artificial Intelligence
Review for Search, Game and RL

Yudong Chen
University of Wisconsin-Madison

Dec 9, 2021

Announcements
• Please fill out couse evaluation survey

• Homework:
– HW10 due next Tuesday (before last class)

• Final exam: Dec 20, 2:45-4:45pm, online

• Class roadmap:
– Today: Demonstration for RL; Review on search, games, RL
– Next Tuesday: Ethics and Trust in AI

Demonstration: GridWorld
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworl
d_dp.html

Note:

• Transition is deterministic
(robot moves exactly as told)

• Game does not terminate
– Reaching B’s: pay -1 and game

continues

– Reaching G: get +1 and robot
teleports to initial state A

• Discount factor = 0.9

B1

B2

B3

B4

B8

B9

G

B5

B6

B7

A

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

What do optimal value/policy look like?
Let’s guess:
• Optimal route?

• !∗($%) vs !∗($')?
• !∗ (= 0.22. Then !∗ - =?
• !∗ $/ ≈?
• If reward(B3) changes to −0.5, should

we go through it?

B1

B2

B3

B4

B8

B9

G

B5

B6

B7

A

What do optimal value/policy look like?
Truth:
• Optimal route (see left)

• !∗ #$ = −0.28 < −0.21 = !∗ #,
• !∗ - = 0.22. Then !∗ . = /. 01
• !∗ #2 = 1. 1$ (close to 0)

• If reward(B3) changes to −0.5, we
should go through B3.

B1

B2

B3

B4

B8

B9

G

B5

B6

B7

A

Visualization of Q Learning and !-Greedy

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

– “Reinit agent” resets the board
– “Toggle TD Learning” starts or stops the agent running

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Review: Outline
• Search

– Uninformed vs Informed
– Optimization

• Games
– Game theory basics, dominant strategy, equilibrium
– Minimax search

• Reinforcement Learning
– MDPs, value iteration, Q-learning

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal (recall game heuristic)

start s
goal

g(s)

start s
goal

g(s) h(s)

Fractalsaco

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)
– Space O(bd)

• Preferred algorithm for uninformed search

O(bm)O(bm)NNDepth-first
search

O(bC*/e)O(bC*/e)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

O(bd)O(bd)Y, if 1YIterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ³ e > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

Performance of Search Algorithms on Trees

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
• Demand that h(s) £ h*(s)

• If heuristic has this property, “admissible”
– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

V. Batoćanin

Search vs. Optimization

Before: wanted a path from start state to goal state
• Uninformed search, informed search

New setting: optimization
• States s have values f(s)
• Want: s with optimal value f(s) (i.e, optimize over states)
• Challenging setting: too many states for previous search

approaches, but maybe not a continuous function for SGD.

Wiki TuringFin

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the largest f(t)
3. if f(t) ≤ f(s) THEN stop, return s
4. s← t. goto 2.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Simulated Annealing

A more sophisticated optimization approach.
• Idea: move quickly at first, then slow down
• Pseudocode:

Pick initial state x
For k = 0 through kmax:

Reduce temperature T
Pick a random neighbour, y ← neighbor(x)
If f(y) ≥ f(x), then x ← y
Else, with prob. P(f(x), f (y), T) then x ← y

Output: the final state x

The interesting bit

Simulated Annealing: Picking Probability

How do we pick probability P?
• Decrease with gap |f(x) - f(y)|
• Decrease with time k

• Temperature T cools over time
– High temperature, accept any y
– Low temperature, behaves like hill-climbing
– Still, |f(x) - f(y)| plays a role: if big, replacement

probability low.

! ", $, % = exp − |,(") − ,($)|%

Genetic Algorithms
Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution
• E.g., analogous to natural selection, cross-over, and mutation

à Next generation
of non-

attacking pairs prob.
reproduction
µ fitness

Games Setup

Games setup: multiple agents

– Now: interactions between agents
– Agents want to maximize utility
– Strategic decision making.

World

Player 1

Player 2

Player 3

Modeling Games: Properties

Let’s work through properties of games
• Number of agents/players
• State & action spaces: discrete or continuous
• Finite or infinite
• Deterministic or random
• Sum: zero or positive or negative
• Sequential or simultaneous

Wiki

• n players {1,2,…,n}
• Player i strategy ai from Ai.

– Strategy of all players: a = (a1, a2, …, an)
• Player i gets rewards ui (a) for any outcome

– Note: reward depends on other players!

Simultaneous Games: Normal Form

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0
Betray 0, −3 −2, −2

• ai is dominant if ai better than ai’ regardless of what other
players do

• !∗ = (!%∗, … , !(∗) is an equilibrium if all the players do not have
an incentive to unilaterally deviate

• A mixed strategy x* = (x1*, …, xn*) is a Nash equilibrium if

Dominant Strategies and Equilibria

Dominant Strategies and Equilibria

• Dominant strategies ⟹ (Pure) Equilibrium ⟹ NE
– Not the other way around

• NE always exists. Not necessarily for the other two

Sequential Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Perform search over the tree

• Can still look for Nash equilibrium
– Or, other criteria like maximin / minimax

Wiki

Let’s stick to zero-sum two-player games
• Write down all the pure strategies (e.g., the big tree) and

select the s* and t*

• Can implement this as depth-first search: minimax algorithm

Minimax Value and Strategies

Minimax Search with !-" pruning
function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)
if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succ(s)

α := max(α , Min-value(s’,α,β))
if (α ≥ β) then return β /* alpha pruning */

return α
function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succs(s)

β := min(β , Max-value(s’,α,β))
if (α ≥ β) then return α /* beta pruning */

return β

Starting from the root:
Max-Value(root, -¥, +¥)

Minimax Search with Heuristics
• Long games are yield huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

Reinforcement Learning

Basic setup:
• Set of states, S

• Set of actions A

• Information: at time t, observe state st∈ S. Get reward rt
• Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at,
and not previous actions or states.

• Reward function: r(st)
• Policy: action to take at a particular state.

Value function

The value function for policy p at state !" is the expected utility
over all possible state sequences from !" produced by following
that policy:

where the utility of a sequence is its corresponding discounted
cumulative reward:

#$!" = &
'()*(+,('

'-./-0+1 2/34 56

7 sequence >(sequence)

A ∈ (0,1): discount factor

Bellman Equation

• Set V*(s) to be value function for optimal policy.
• V*(s) satisfies the Bellman Equation: for all s,

Discounted expected
future rewards

Current state
reward

Value Iteration

Q: How do we find V*(s)?
• Know: reward r(s), transition probability P(s’|s,a)

• Also know V*(s) satisfies Bellman equation

A: Start with V0(s)=0, ∀s. Then for all s, update

From Optimal Value to Optimal Policy

Now that !∗ #$ is known, what a should we take?
• What’s the expected utility of an action a in state s?

• So, to get the optimal policy, compute

All the states we
could go to Transition probability Expected rewards

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
• Q-learning: get an action-value function Q(s,a) that tells us

the value of doing a in state s
• How do we get Q(s,a)? Similar iterative procedure:

Learning rate

SARSA

An alternative:
• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)

Learning rate

Epsilon-Greedy Policy

Need to balance exploitation and exploration
• With some 0<ε<1 probability, take a random action at each

state, or else the action with highest Q(s,a) value.

• Can be used in Q Learning and SARSA

Acknowledgements: Based on slides from Fred Sala, Yin Li, Jerry Zhu, Svetlana
Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

