

CS 540 Introduction to Artificial Intelligence Review for Search, Game and RL

Yudong Chen University of Wisconsin-Madison

Dec 9, 2021

Announcements

- Please fill out couse evaluation survey
- Homework:
 - HW10 due next Tuesday (before last class)
- Final exam: Dec 20, 2:45-4:45pm, online
- Class roadmap:
 - Today: **Demonstration for RL**; Review on search, games, RL
 - Next Tuesday: Ethics and Trust in AI

Demonstration: GridWorld

0.00 ₽	0.00	0.00 ₩	0.00 ₩	0.00 ❤	0.00 ₩	0.00 ❤	0.00 ₩	0.00 ₩	0.00 ••
0.00 \$	0.00	0.00	0.00	0.00 ◆	0.00	0.00	0.00	0.00	0.00 \$
0.00 •					0.00				0.00 4
0.00 •	0.00 ◆	0.00	0.00 •B1 R-10		0.00	0.00	0.00	0.00	0.00 \$
0.00 •	0.00 ◆	0.00	0.00		0.00 B -1.0	0.00 •B	0.00	0.00 ◆	0.00 \$
0.00 •	0.00 ◆	0.00 ◆	0.00		0.00 ♦ G	0.00 •B(R-1.0	0.00 ◆	0.00 •B8 R-1.0	0.00 4
0.00 •	0.00 ◆	0.00 ◆	0.00		0.00 ◆	0.00 ◆	0.00 ◆	0.00 B -1.0	0.00 4
0.00 •	0.00 ◆	0.00 ◆	0.00 ♦B2 8-1.0		0.00 ◆B4 8-1.0	0.00 •B7 R-1.0	0.00	0.00 ◆	0.00 \$
0.00 •	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 ◆	0.00 \$
0.00	0.00 •	0.00 •	0.00	0.00	0.00	0.00	0.00 •	0.00	0.00 •

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworl d_dp.html

Note:

- Transition is deterministic (robot moves exactly as told)
- Game does not terminate
 - Reaching B's: pay -1 and game continues
 - Reaching G: get +1 and robot teleports to initial state A
- Discount factor = 0.9

What do optimal value/policy look like?

0.00 ₽ ↑	0.00 •	0.00 *	0.00 ❤	0.00 ₩	0.00 ❤	0.00 ₩	0.00 ❤	0.00 ❤	0.00 ••
0.00 •	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 4
0.00 •					0.00				0.00 4
0.00 •	0.00	0.00	0.00 ◆B1		0.00	0.00	0.00 •	0.00	0.00 ≰
0.00 •	0.00 ◆	0.00 ◆	0.00		0.00 ♦B3	0.00 ♦ B5	0.00 ◆	0.00	0.00 ⊄
0.00 \$	0.00 ◆	0.00 ◆	0.00		0.00 ♦ G	0.00 ◆B6	0.00	0.00 ◆B8	0.00 4
0.00 •	0.00	0.00	0.00		0.00	0.00	0.00 ◆	0.00 ♦B9	0.00 4
0.00 •	0.00	0.00 ◆	0.00 ♦B2		0.00 ◆B4	0.00 ◆B7	0.00	0.00	0.00 \$
0.00 •	0.00	0.00 ◆	0.00	0.00	0.00	0.00	0.00 ◆	0.00	0.00 \$
0.00	0.00	0.00	0.00 •	0.00	0.00	0.00	0.00 •	0.00	0.00 •

Let's guess:

- Optimal route?
- V*(**B8**) vs V*(**B9**)?
- $V^*(\mathbf{A}) = 0.22$. Then $V^*(\mathbf{G}) = ?$
- $V^*(\mathbf{B3}) \approx ?$
- If reward(B3) changes to -0.5, should we go through it?

Visualization of Q Learning and ϵ -Greedy

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

- "Reinit agent" resets the board
- "Toggle TD Learning" starts or stops the agent running

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
€	₩	*	❤	❤	❤	❤	❤	₩	€
00.0 €	0.00 ◆	0.00 ◆	0.00 ◆	0.00 ◆	0.00 ◆	0.00	0.00	0.00 ◆	0.00 ∙ ⊄
00.00 \$					0.00				0.00 ≰
0.00 ¢	0.00 •	0.00 ◆	0.00 + R-1.0		0.00 ◆	0.00 ◆	0.00 ◆	0.00 ◆	0.00 ♦
00.0	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
€	◆	◆	◆				✦	◆	∳
00.0	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
4	◆	◆	◆				✦		◆
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
•	◆	◆	◆		◆	◆	◆		≰
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00
\$	◆	◆	R -1.0		R -1.0		◆	◆	\$
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\$	◆	◆	◆	◆	◆	◆	✦	✦	\$
0.00	0.00 •	0.00 •	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Review: Outline

- Search
 - Uninformed vs Informed
 - Optimization
- Games
 - Game theory basics, dominant strategy, equilibrium
 - Minimax search
- Reinforcement Learning
 - MDPs, value iteration, Q-learning

Uninformed vs Informed Search

hls

Uninformed search (all of what we saw). Know:

- Path cost *g*(*s*) from start to node *s*
- Successors. start s

goa

Informed search. Know:

• All uninformed search properties, plus

start

• Heuristic h(s) from s to goal (recall game heuristic)

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- Properties:
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
 - Space O(bd)
- Preferred algorithm for uninformed search

Performance of Search Algorithms on Trees

b: branching factor (assume finite)

d: goal depth

m: graph depth

	Complete	optimal	time	space
Breadth-first search	Y	Y, if ¹	O(b ^d)	O(b ^d)
Uniform-cost search ²	Y	Y	O(b ^{C*/ε})	O(b ^{C*/ε})
Depth-first search	Ν	Ν	O(b ^m)	O(bm)
Iterative deepening	Y	Y, if ¹	O(b ^d)	O(bd)

- 1. edge cost constant, or positive non-decreasing in depth
- 2. edge costs $\geq \varepsilon > 0$. C* is the best goal path cost.

Informed Search: A* Search

- A*: Expand best *g(s)* + *h(s)*, with one requirement
- Demand that *h*(*s*) ≤ *h**(*s*)

- If heuristic has this property, "admissible"
 - Optimistic! Never over-estimates

- Still need $h(s) \ge 0$
 - Negative heuristics can lead to strange behavior

Search vs. Optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

• States *s* have values *f*(*s*)

- rch $3 \xrightarrow{2}{3} \xrightarrow{4}{7} \xrightarrow{8}{11} \xrightarrow{1}{12}$ $3 \xrightarrow{1}{11} \xrightarrow{1}{12}$ $3 \xrightarrow{1}{12} \xrightarrow{1}{12} \xrightarrow{1}{12}$ $3 \xrightarrow{1}{12} \xrightarrow{1}{12} \xrightarrow{1}{12} \xrightarrow{1}{12}$ $3 \xrightarrow{1}{12} \xrightarrow{1}{1$
- Want: *s* with optimal value *f*(*s*) (i.e, **optimize** over states)
- Challenging setting: **too many states** for previous search approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm

Pseudocode:

- 1. Pick initial state s
- 2. Pick t in **neighbors**(s) with the largest f(t)
- 3. if $f(t) \le f(s)$ THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

What could happen? Local optima!

Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?

Simulated Annealing

A more sophisticated optimization approach.

- Idea: move quickly at first, then slow down
- Pseudocode:

```
Pick initial state x

For k = 0 through k_{max}:

Reduce temperature T

Pick a random neighbour, y \leftarrow neighbor(x)

If f(y) \ge f(x), then x \leftarrow y

Else, with prob. P(f(x), f(y), T) then x \leftarrow y

Output: the final state x
```

Simulated Annealing: Picking Probability

How do we pick probability P? $P(x, y, T) = \exp\left(-\frac{|f(x) - f(y)|}{T}\right)$

- Decrease with gap |f(x) f(y)|
- Decrease with time k

- Temperature **T** cools over time
 - High temperature, accept any y
 - Low temperature, behaves like hill-climbing
 - Still, |f(x) f(y)| plays a role: if big, replacement probability low.

Genetic Algorithms

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

• E.g., analogous to **natural selection, cross-over**, and **mutation**

Games Setup

Games setup: multiple agents

Strategic decision making.

Modeling Games: Properties

Let's work through **properties** of games

- Number of agents/players
- State & action spaces: discrete or continuous
- Finite or infinite
- Deterministic or random
- Sum: zero or positive or negative
- Sequential or simultaneous

Simultaneous Games: Normal Form

- *n* players {1,2,...,*n*}
- Player *i* strategy a_i from A_i .
 - Strategy of **all** players: $a = (a_1, a_2, ..., a_n)$
- Player *i* gets rewards $u_i(a)$ for any outcome
 - Note: reward depends on other players!

Player 2	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

Dominant Strategies and Equilibria

- *a_i* is **dominant** if *a_i* better than *a_i' regardless* of what other players do
 u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i})∀a'_i ≠ a_i and ∀a_{-i}
 u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i})∀a'_i ≠ a_i and ∀a_{-i}
 *u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i})∀a'_i ≠ a_i and ∀a_{-i} u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i})∀a'_i ≠ a_i and ∀a_{-i} u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i})∀a'_i ≠ a_i and ∀a_{-i} u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i})∀a'_i ≠ a_i and ∀a_{-i}
 <i>u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i})∀a'_i ≠ a_i and ∀a_{-i}
 <i>u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i})∀a'_i ≠ a_i and ∀a_{-i}
 <i>u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i}) ∀a'_i ≠ a_i and ∀a_{-i}
 <i>u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i}) ∀a'_i ≠ a_i and ∀a_{-i}
 <i>u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i}) ∀a'_i ≠ a_i and ∀a_{-i}
 <i>u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i}) ∀a'_i ≠ a_i and ∀a_{-i}
 <i>u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i}) ∀a'_i ≠ a_i and ∀a_{-i}
 <i>u_i(a_i, a_{-i}) ≥ u_i(a'_i, a_{-i}) ∀a'_i ≠ a_i and ∀a_{-i}
 <i>u_i (a_i, a_{-i}) ≥ u_i(a'_i, a_{-i}) ∀a_i → a_i → a_i and ∀a_{-i} → a_i → a*
- $a^* = (a_1^*, ..., a_n^*)$ is an **equilibrium** if all the players do not have an incentive to *unilaterally deviate*

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

• A mixed strategy $x^* = (x_1^*, ..., x_n^*)$ is a Nash equilibrium if

$$u_i(x_i^*, x_{-i}^*) \ge u_i(x_i, x_{-i}^*) \quad \forall x_i \in \Delta_{A_i}, \forall i \in \{1, \dots, n\}$$

Dominant Strategies and Equilibria

- Dominant strategies \Rightarrow (Pure) Equilibrium \Rightarrow NE
 - Not the other way around
- NE always exists. Not necessarily for the other two

Sequential Games

More complex games with multiple moves

- Instead of normal form, extensive form
- Represent with a **tree**
- Perform search over the tree

Can still look for Nash equilibrium
Or, other criteria like maximin / minimax

Minimax Value and Strategies

Let's stick to zero-sum two-player games

 Write down all the pure strategies (e.g., the big tree) and select the s* and t*

$$s^* = \arg \max_{s \in S} \min_{t \in T} u(s, t) \qquad t^* = \arg \min_{t \in T} \max_{s \in S} u(s, t)$$

• Can implement this as depth-first search: minimax algorithm

Minimax Search with α - β pruning

function Max-Value (s,α,β) inputs: s: current state in game, Max about to play

α: best score (highest) for Max along path to s β: best score (lowest) for Min along path to s output: $min(\beta, best-score (for Max) available from s)$

 $\begin{array}{l} \mbox{if (s is a terminal state)} \\ \mbox{then return (terminal value of s)} \\ \mbox{else for each s' in Succ(s)} \\ \mbox{$\alpha := max(\alpha , Min-value(s', \alpha, \beta))$} \\ \mbox{if (} \alpha \geq \beta) \mbox{then return } \beta \ /* \mbox{ alpha pruning } */ \\ \mbox{return } \alpha \end{array}$

function Min-Value(s, α , β) output: max(α , best-score (for Min) available from s)

```
if (s is a terminal state)
then return (terminal value of s)
else for each s' in Succs(s)
\beta := \min(\beta, Max-value(s', \alpha, \beta))
if (\alpha \ge \beta) then return \alpha /* beta pruning */
return \beta
```

Starting from the root: Max-Value(root, $-\infty$, $+\infty$)

Minimax Search with Heuristics

- Long games are yield huge computation
- To deal with this: limit *d* for the search depth
- **Q**: What to do at depth *d*, but no termination yet?
 - A: Use a heuristic evaluation function e(x)

```
function MINIMAX(x, d) returns an estimate of x's utility value

inputs: x, current state in game

d, an upper bound on the search depth

if x is a terminal state then return Max's payoff at x

else if d = 0 then return e(x)

else if it is Max's move at x then

return max{MINIMAX(y, d-1) : y is a child of x}

else return min{MINIMAX(y, d-1) : y is a child of x}
```

Reinforcement Learning

Basic setup:

- Set of states, S
- Set of actions A

- Information: at time t, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from **states to actions** maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model:

- State set S. Initial state s_{0.} Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: **r**(s_t)
- **Policy**: $\pi(s) : S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Value function

The value function for policy π at state s_0 is the expected utility over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) =$$

P(sequence)*U*(sequence)

sequences starting from s₀

where the utility of a sequence is its corresponding **discounted cumulative reward**: $\gamma \in (0,1)$: discount factor

$$U(s_0, s_1...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + ... = \sum_{t \ge 0} \gamma^t r(s_t)$$

Bellman Equation

- Set *V**(s) to be value function for **optimal** policy.
- V*(s) satisfies the Bellman Equation: for all s,

Value Iteration

- **Q**: How do we find $V^*(s)$?
- Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- Also know V*(s) satisfies Bellman equation

A: Start with $V_0(s)=0$, $\forall s$. Then for all s, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

From Optimal Value to Optimal Policy

Now that $V^*(s_0)$ is known, what *a* should we take?

• What's the expected utility of an action *a* in state *s*?

• So, to get the optimal policy, compute

$$\pi^*(\boldsymbol{s}) = \operatorname{argmax}_{\boldsymbol{a}} \sum_{\boldsymbol{s}'} P(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) V^*(\boldsymbol{s}')$$

Q-Learning

What if we don't know transition probability P(s' | s,a)?

- Q-learning: get an action-value function Q(s,a) that tells us the value of doing a in state s
- How do we get Q(*s*,*a*)? Similar iterative procedure:

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r(s_t) + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)]$ Learning rate

SARSA

An alternative:

• Just use the next action, no max over actions:

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha[r(\mathbf{s}_t) + \gamma Q(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

Learning rate

• Called state-action-reward-state-action (SARSA)

Epsilon-Greedy Policy

Need to balance **exploitation** and **exploration**

 With some 0<ε<1 probability, take a random action at each state, or else the action with highest Q(s, a) value.

$$a = \begin{cases} \operatorname{argmax}_{a \in A} Q(s, a) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} a \in A & \operatorname{otherwise} \end{cases}$$

• Can be used in Q Learning and SARSA

Acknowledgements: Based on slides from Fred Sala, Yin Li, Jerry Zhu, Svetlana Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein