
CS 540 Introduction to Artificial Intelligence

Review for Search, Game and RL

Yudong Chen
University of Wisconsin-Madison

Dec 9, 2021

Announcements

• Please fill out couse evaluation survey

• Homework:
– HW10 due next Tuesday (before last class)

• Final exam: Dec 20, 2:45-4:45pm, online

• Class roadmap:
– Today: Demonstration for RL; Review on search, games, RL
– Next Tuesday: Ethics and Trust in AI

Demonstration: GridWorld
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworl
d_dp.html

Note:

• Transition is deterministic
(robot moves exactly as told)

• Game does not terminate

– Reaching B’s: pay -1 and game
continues

– Reaching G: get +1 and robot
teleports to initial state A

• Discount factor = 0.9

B1

B2

B3

B4

B8

B9

G

B5

B6

B7

A

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

What do optimal value/policy look like?

Let’s guess:

• Optimal route?

• 𝑉∗(𝐁𝟖) vs 𝑉∗(𝐁𝟗)?

• 𝑉∗ 𝐀 = 0.22. Then 𝑉∗ 𝐆 =?

• 𝑉∗ 𝐁𝟑 ≈?

• If reward(B3) changes to −0.5, should
we go through it?

B1

B2

B3

B4

B8

B9

G

B5

B6

B7

A

Visualization of Q Learning and 𝜖-Greedy

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

– “Reinit agent” resets the board

– “Toggle TD Learning” starts or stops the agent running

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Review: Outline

• Search
– Uninformed vs Informed

– Optimization

• Games
– Game theory basics, dominant strategy, equilibrium

– Minimax search

• Reinforcement Learning
– MDPs, value iteration, Q-learning

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

• Path cost g(s) from start to node s

• Successors.

Informed search. Know:

• All uninformed search properties, plus

• Heuristic h(s) from s to goal (recall game heuristic)

start
s

goal
g(s)

start s
goal

g(s) h(s)

Fractalsaco

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

• Search like BFS, fringe like DFS

• Properties:
– Complete

– Optimal (if edge cost 1)

– Time O(bd)

– Space O(bd)

• Preferred algorithm for uninformed search

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

O(bd)O(bd)Y, if 1Y
Iterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

Performance of Search Algorithms on Trees

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement

• Demand that h(s) h*(s)

• If heuristic has this property, “admissible”
– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

V. Batoćanin

Search vs. Optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

• States s have values f(s)

• Want: s with optimal value f(s) (i.e, optimize over states)

• Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Wiki
TuringFin

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the largest f(t)
3. if f(t) ≤ f(s) THEN stop, return s
4. s← t. goto 2.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Simulated Annealing

A more sophisticated optimization approach.

• Idea: move quickly at first, then slow down

• Pseudocode:

Pick initial state x
For k = 0 through kmax:

Reduce temperature T
Pick a random neighbour, y ← neighbor(x)
If f(y) ≥ f(x), then x ← y
Else, with prob. P(f(x), f (y), T) then x ← y

Output: the final state x

The interesting bit

Simulated Annealing: Picking Probability

How do we pick probability P?

• Decrease with gap |f(x) - f(y)|

• Decrease with time k

• Temperature T cools over time
– High temperature, accept any y

– Low temperature, behaves like hill-climbing

– Still, |f(x) - f(y)| plays a role: if big, replacement
probability low.

𝑃 𝑥, 𝑦, 𝑻 = exp −
|𝑓(𝑥) − 𝑓(𝑦)|

𝑻

Genetic Algorithms

Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution

• E.g., analogous to natural selection, cross-over, and mutation

→ Next generation

of non-
attacking pairs prob.

reproduction
 fitness

Games Setup

Games setup: multiple agents

– Now: interactions between agents

– Agents want to maximize utility

– Strategic decision making.

World

Player 1

Player 2

Player 3

Modeling Games: Properties

Let’s work through properties of games

• Number of agents/players

• State & action spaces: discrete or continuous

• Finite or infinite

• Deterministic or random

• Sum: zero or positive or negative

• Sequential or simultaneous

Wiki

• n players {1,2,…,n}

• Player i strategy ai from Ai.
– Strategy of all players: a = (a1, a2, …, an)

• Player i gets rewards ui (a) for any outcome
– Note: reward depends on other players!

Simultaneous Games: Normal Form

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2

• ai is dominant if ai better than ai’ regardless of what other
players do

• 𝑎∗ = (𝑎1
∗ , … , 𝑎𝑛

∗) is an equilibrium if all the players do not have
an incentive to unilaterally deviate

• A mixed strategy x* = (x1*, …, xn*) is a Nash equilibrium if

Dominant Strategies and Equilibria

Dominant Strategies and Equilibria

• Dominant strategies ⟹ (Pure) Equilibrium ⟹ NE
– Not the other way around

• NE always exists. Not necessarily for the other two

Sequential Games

More complex games with multiple moves

• Instead of normal form, extensive form

• Represent with a tree

• Perform search over the tree

• Can still look for Nash equilibrium

– Or, other criteria like maximin / minimax

Wiki

Let’s stick to zero-sum two-player games

• Write down all the pure strategies (e.g., the big tree) and
select the s* and t*

• Can implement this as depth-first search: minimax algorithm

Minimax Value and Strategies

Minimax Search with 𝛼-𝛽 pruning
function Max-Value (s,α,β)
inputs:

s: current state in game, Max about to play
α: best score (highest) for Max along path to s
β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)
if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succ(s)

α := max(α , Min-value(s’,α,β))
if (α ≥ β) then return β /* alpha pruning */

return α

function Min-Value(s,α,β)
output: max(α , best-score (for Min) available from s)

if (s is a terminal state)
then return (terminal value of s)
else for each s’ in Succs(s)

β := min(β , Max-value(s’,α,β))
if (α ≥ β) then return α /* beta pruning */

return β

Starting from the root:

Max-Value(root, -, +)

Minimax Search with Heuristics

• Long games are yield huge computation

• To deal with this: limit d for the search depth

• Q: What to do at depth d, but no termination yet?
– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

Reinforcement Learning

Basic setup:

• Set of states, S

• Set of actions A

• Information: at time t, observe state st∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: action to take at a particular state.

Value function

The value function for policy at state 𝑠0 is the expected utility
over all possible state sequences from 𝑠0 produced by following
that policy:

where the utility of a sequence is its corresponding discounted
cumulative reward:

𝑉𝜋 𝑠0 =

sequences
starting from 𝑠0

𝑃 sequence 𝑈(sequence)

𝛾 ∈ (0,1): discount factor

Bellman Equation

• Set V*(s) to be value function for optimal policy.

• V*(s) satisfies the Bellman Equation: for all s,

Discounted expected
future rewards

Current state
reward

Value Iteration

Q: How do we find V*(s)?

• Know: reward r(s), transition probability P(s’|s,a)

• Also know V*(s) satisfies Bellman equation

A: Start with V0(s)=0, ∀s. Then for all s, update

From Optimal Value to Optimal Policy

Now that 𝑉∗ 𝑠0 is known, what a should we take?

• What’s the expected utility of an action a in state s?

• So, to get the optimal policy, compute

All the states we
could go to Transition probability Expected rewards

Q-Learning

What if we don’t know transition probability P(s’|s,a)?

• Q-learning: get an action-value function Q(s,a) that tells us
the value of doing a in state s

• How do we get Q(s,a)? Similar iterative procedure:

Learning rate

SARSA

An alternative:

• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)

Learning rate

Epsilon-Greedy Policy

Need to balance exploitation and exploration
• With some 0<ε<1 probability, take a random action at each

state, or else the action with highest Q(s,a) value.

• Can be used in Q Learning and SARSA

Acknowledgements: Based on slides from Fred Sala, Yin Li, Jerry Zhu, Svetlana

Lazebnik, Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

