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Lecture 12: Conjugate Gradient Methods

Yudong Chen

Given a symmetric positive definite (PD) matrix A, we want to minimize

flx) = %xTAx —b'x

We have Vf(x) = Ax —band V?f(x) = A. Since 0 < A < Amax(A)I, f is convex and Amax(A)-
smooth, and the global minimizer is x* = A~!b = argmin, f(x).

Example 1. A special case of the above problem is the linear least squares problem
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Question 1. Why not just use the formula x* = A~1b to compute the minimizer?

1 First-order methods and Krylov subspace

(In this section, x; denotes the iterate of an arbitrary first-order method.)
Consider first order methods for which each iterate x; lies in the affine subspace

xo+Lin{Vf(x0),..., Vf(xk_1)};
explicitly, .
Xe=x0— Y_ hixVf(xi), ()
i—0

1

where h; € R, Vi, k. Both GD and AGD take the form (1).
For quadratic f, thanks to the expression Vf(x) = Ax —b = A(x — x*) for the gradient, we
have the following.

Lemma 1. For the quadratic function f(x) = 3x' Ax — b x and all k > 0, we have
X € xo + Lin {A(xo —x*), A%(xg — x*), ..., AR (xo — x*)}
Proof. We prove by induction on k. Base case k = 0 is trivially true. Suppose
x;j — xp € Lin {A(xo —x*), A% (xg — x%),..., Al(xo — x*)} , Vi < k.
It follows

Vi(x) =A(x;—x%)
€ Lin {A(xo —x*), A% (xg — x%),..., A (xg — x*)}, Vi < k.
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Hence

Xi1 — X0 € Lin{V f(x0),..., Vf(xx)}
C Lin {A(xo —x*), A%(xg — x%), ..., AR (xp — x*)} : ()

Definition 1. The linear subspace
Ky := Lin {A(xo —x*), A% (xg — x%),..., AR(xo — x*)}

is called the Krylov subspace of order k.

Lemma 1 says all first-order methods in the form (1) satisfy xx € xo + Ky, Vk.

2 Conjugate gradient methods

(In this section, x; denotes the iterate of the CG method specifically.)
The conjugate gradient (CG) method is given by

= , k=1,2,...
= ang, min f)

For quadratic f, CG converges at least as fast as any first-order method, including Nesterov’s
AGD. Therefore, CG outputs x; such that f(x;) — f(x*) < € in at most

L *
(mm{\/»on—x 1Py \/ log one Hz}) iterations,

where L = Apax(A) and m = Apin(A). But we can say more.

2.1 Properties of CG

Lemma 2 (Lem 1.3.1 in Nesterov’s book). For any k > 1, we have

]Ck = Lin {Vf(xo), ceoy Vf(xk,l)} .

Proof. In equation (2) we already established Lin {Vf(xp),..., Vf(xx-1)} C Ki. It remains to
prove the reverse inclusion.
Use induction on k. Suppose Lin {V f(xo),..., Vf(xx_1)} 2 Ki; want to show Lin{V f(xp),..., Vf(xx)} 2

K1
Note that x;_1 € xp + K_1 can be expressed as

k=1
Xp_1 = X0 + Z 5i,k_1Al(x0 - x*).
i=1

Consider two cases:
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* Vf(xx_1) = 0. Hence

0=Vf(xe1)=A(x_1—x%)
k-2

= Alxg—x*) + Y Bix—1 AT (xo — x*) +Br_1 1A (x0 — x¥).
i=1

ERk1

This means A (xg — x*) € Ky_; and K = Ki_1. Inturn, A* (xg — x*) € Ky and Kyyq = Ky
We conclude that Lin {V f(xo), ..., Vf(xx)} 2 K¢ = Ku1.

* Vf(xx_1) # 0. Then

k .
Vi(x) = Alxo —x*) + Y Bix A (xo — x¥)
i=1
k-1 ‘
= A(Xo — x*) + Z ,Bi,kAl+l(xO — X*) —|—ﬁk,kAk+l(xO — x*).
i=1

ek

We claim and prove later that B x # 0. In this case,

Kiy1 = Lin {ICk U A (x — x*)}
=Lin{x UV f(xx)}.
CLin{Vf(x0),...,Vf(xe_1), Vf(xp)}.
Proof of claim: If B; = 0, then
k=1

Xk = Xo + Z ﬁi,kAi(xo —x*) € xo + Kr_1,
i=1

SO
Xy = arg xerJIc;Tlef(x) = arg x@g&r,%kilf(x) = Xg_1-
Note that .
Ye1 = 7 VI (x1) € x0 + K,
hence

Flri) = F) < F (32— [V F (i)
< f(xg-1) — % ||Vf(xk_1)||§. Descent Lemma

We must have V f(x;_1) = 0, contradicting the assumption V f(x;_1) # 0.

Lemma 3 (Lem 1.3.2 in Nes book). Forany 0 <i < k, we have
(Vf(xx), Vf(xi)) =0.

3
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Proof. Define
k-1
D(A) = f<xo - ;]/\ivf(xi) >,

X EX+ g

where A = (Ag, A1, A, ..., /\k_l)T € Rk, By specification of CG, we have
k-1
X = X0 — L AiVf(x;) = arg xer?oTka(x)'

hence

A= in ®(A).
arg min (1)

Therefore, for each i:
oD(A
0= 2N _ (f(n), - V).

Two immediate corollaries:
Corollary 1 (Cor 1.3.1 in Nes book). CG finds x* = argmin, .« f(x) in at most d iterations.

Proof. Lemma 3 says Vf(xq), Vf(x1),... are orthogonal to each other. But in R?, there cannot be
more than d orthogonal non-zero vectors, so we must have V f(x;) = 0 and thus x; is optimal. [

Corollary 2 (Cor 1.3.2 in Nes book). Vp € Ky, (V f(xx), p) = 0.
Proof. By Lemma 2, p € Ky = Lin{V f(xo),..., Vf(xx_1)}. By Lemma 3, any linear combination
of {Vf(x0),..., Vf(xr_1)} is orthogonal to V f(xy). O

2.2 Why is CG called CG?
Definition 2. Two vectors p,q € IR are said to be conjugate w.r.t. a matrix A € R**if (Ap,q) = 0.
We can write the iteration of CG as
X1 = Xk — hiepy,
where /iy is the stepsize and py is the search direction. Later we show that
Vk#i:  (Apk pi) =0.

Nocedal-Wright: “Conjugate gradients is a misnomer. It is the search/descent directions that are
conjugate, not the gradients.”
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