
UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

Lecture 13: Conjugate Gradient Methods:
Implementation and Extensions

Yudong Chen

1 Recap

Consider f (x) = 1
2 x⊤Ax − b⊤x, where A ≻ 0. Minimizing f is equivalent to solving the linear

system Ax = b.
The conjugate gradient (CG) method is given by

xk = arg min
x∈x0+Kk

f (x), k = 1, 2, . . . ,

where Kk := Lin
{

A(x0 − x∗), . . . , Ak(x0 − x∗)
}

is the Krylov subspace of order k.

Lemma 1. For any k ≥ 1, we have Kk = Lin {∇ f (x0), . . . ,∇ f (xk−1)} .

Lemma 2. For any 0 ≤ i < k, we have ⟨∇ f (xk),∇ f (xi)⟩ = 0.

Corollary 1. CG finds x∗ = arg minx∈Rd f (x) in at most d iterations.

Corollary 2. ∀p ∈ Kk, ⟨∇ f (xk), p⟩ = 0.

2 Efficient implementation of CG

Define δi := xi+1 − xi.

Lemma 3. For all k ≥ 1, Kk = Lin {δ0, δ1, . . . , δk−1} .

Proof. Suppose Lin {δ0, δ1, . . . , δk−1} = Kk. Want to show Lin {δ0, δ1, . . . , δk} = Kk+1.

• If ∇ f (xk) = 0: In the proof of Lemma 1 we showed that Kk+1 = Kk and xk+1 = xk = x∗.
Hence Lin {δ0, δ1, . . . , δk−1, δk} = Lin {δ0, δ1, . . . , δk−1, 0} = Kk = Kk+1.

• If ∇ f (xk) ̸= 0: In the proof of Lemma 1 we showed that

xk+1 = x0 +
k

∑
i=1

βi,k+1Ai(x0 − x∗) + βk+1,k+1Ai(x0 − x∗)

for some βk+1,k+1 ̸= 0, hence

δk = xk+1 − xk = x0 − xk︸ ︷︷ ︸
∈Kk

+
k

∑
i=1

βi,k+1Ai(x0 − x∗)︸ ︷︷ ︸
∈Kk

+βk+1,k+1Ak+1(x0 − x∗),

1



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

hence

Lin {δ0, δ1, . . . , δk−1, δk} = Lin {Kk ∪ δk}

= Lin
{
Kk ∪ Ak+1(x0 − x∗)

}
= Kk+1.

Lemma 4 (Lem 1.3.3 in Nes book). For any k, i ≥ 0, k ̸= i, the vectors δi, δk are conjugate w.r.t. A, i.e.,
⟨Aδk, δi⟩ = 0.

Proof. Assume w.l.o.g. k > i. Then

⟨Aδk, δi⟩ = ⟨A(xk+1 − xk), δi⟩
= ⟨A(xk+1 − x∗)− A(xk − x∗), δi⟩
= ⟨∇ f (xk+1), δi⟩ − ⟨∇ f (xk), δi⟩
= 0 − 0,

where in the last step we use δi ∈ Ki+1 ⊆ Kk ⊆ Kk+1 and Corollary 2.

We are ready to derive an explicit formula for CG iterate xk+1. As Kk = Lin {δ0, . . . , δk−1} , we
can express xk+1 ∈ x0 +Kk+1 as

xk+1 = xk︸︷︷︸
∈x0+Kk

− hk∇ f (xk)︸ ︷︷ ︸
∈Kk+1\Kk

+
k−1

∑
j=0

αjδj︸ ︷︷ ︸
∈Kk

for some scalars hk, α0, α1, . . . , αk−1. Equivalently,

δk = −hk∇ f (xk) +
k−1

∑
j=0

αjδj.

To make the above implementable, we need to determine hk and {αj}. For i = 0, 1, . . . , k − 1,
taking the inner product with Aδi gives

0 = ⟨Aδi, δk⟩ Lemma 4

= −hk ⟨Aδi,∇ f (xk)⟩+
k−1

∑
j=0

αj
〈

Aδj, δi
〉

= −hk ⟨Aδi,∇ f (xk)⟩+ αi ⟨Aδi, δi⟩ . Lemma 4

But
Aδi = A(xi+1 − x∗)− A(xi − x∗) = ∇ f (xi+1)−∇ f (xi).

Combining the last two equations gives

hk ⟨∇ f (xi+1)−∇ f (xi),∇ f (xk)⟩ = αi ⟨Aδi, δi⟩ .

2



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

• For i = 0, 1, . . . , k − 2, we have ⟨∇ f (xi+1),∇ f (xk)⟩ = ⟨∇ f (xi),∇ f (xk)⟩ = 0 by Lemma 2,
hence

0 = αi ⟨Aδi, δi⟩
A≻0
=⇒ αi = 0.

• For i = k − 1, we have

hk ⟨∇ f (xk)−∇ f (xk−1),∇ f (xk)⟩ = αk−1 ⟨Aδk−1, δk−1⟩︸ ︷︷ ︸
̸=0 as A≻0

.

Note that ⟨∇ f (xk−1),∇ f (xk)⟩ = 0, hence

αk−1 =
hk ∥∇ f (xk)∥2

2
⟨Aδk−1, δk−1⟩

=
hk ∥∇ f (xk)∥2

2
⟨∇ f (xk)−∇ f (xk−1), δk−1⟩

.

Combining, we obtain that

xk+1 = xk − hk∇ f (xk) + αk−1δk−1 (1)

= xk − hk

(
∇ f (xk)−

∥∇ f (xk)∥2
2

⟨∇ f (xk)−∇ f (xk−1), δk−1⟩
δk−1

)
︸ ︷︷ ︸

=:pk

,

where pk ∈ Rd is viewed as the search direction and hk ∈ R is viewed as the stepsize. Since
xk − hpk ∈ x0 +Kk+1 for all h and xk+1 minimizes f (x) over Kk+1, the stepsize hk is given by exact
line search:

hk = arg min
h∈R

f (xk − hpk).

Explicit form of CG: In summary, CG can be implemented as

xk+1 = xk − hk pk,

where

pk = ∇ f (xk)−
∥∇ f (xk)∥2

2
⟨∇ f (xk)−∇ f (xk−1), δk−1⟩

δk−1,

δk−1 = xk − xk−1,
hk = arg min

h∈R
f (xk − hpk).

Note that the exact line search step involves optimizing a one-dimensional quadratic function and
can be computed in closed form.

Question 1. How much storage is needed in CG? How much computation per iteration?

Remark 1 (Conjugacy). The search directions pk = − 1
hk

δk are conjugate w.r.t. A:

⟨Apk, pi⟩ = 0, ∀k ̸= i

since ⟨Aδk, δi⟩ = 0 (Lemma 4).

3



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

Remark 2 (Relation to heavy-ball). From (1) we have

xk+1 = xk − hk∇ f (xk) + αk−1(xk − xk−1),

which resembles the heavy-ball method (gradient step + momentum step) but with time-varying
hk and αk.

Remark 3. CG does not require knowing the smoothness and strong convexity parameters L and
m.

Remark 4. CG for quadratic f has a very rich convergence theory beyond the asymptotic linear
rate. For example:

• If A has r distinct eigenvalues, CG terminates in at most r iterations.

• More generally, CG converges fast when the eigenvalues of A have a clustering structure.

• Precondition CG: one may transform the problem so that A has a more favorable eigenvalue
distribution.

We will not delve into these results; see Chapter 5.1 of Nocedal-Wright.

3 Extension to non-quadratic functions

We have written CG in a form that only involves the gradient of f , without explicit dependence on
the quadratic structure of f . This allows extension to non-quadratic functions. (Such extensions
are known as “nonlinear CG”, since ∇ f (x) is nonlinear in x.)

Algorithm 1 Nonlinear CG

• Initial search direction: p0 = ∇ f (x0).

• For k = 0, 1, . . .

– Set
xk+1 = xk − hk pk,

where hk is computed by (exact or inexact) line search.

– Compute the next search direction as

pk+1 = ∇ f (xk+1)− βk pk,

with some specific choice of βk (see below).

There are different ways of choosing βk’s:

• Dai-Yuan: βk =
∥∇ f (xk+1)∥2

2
⟨∇ f (xk+1)−∇ f (xk),pk⟩

. (equivalent to the αk−1 that we derived for quadratic f )

• Fletcher-Rieves: βk = − ∥∇ f (xk+1)∥2
2

∥∇ f (xk)∥2
2

.

• Polak-Ribiere: βk = − ⟨∇ f (xk+1),∇ f (xk+1)−∇ f (xk)⟩
∥∇ f (xk)∥2

2
.

4



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

All of above lead to the same results in the case of quadratic f . See Chapter 5.2 of Nocedal-Wright
for more on nonlinear CG.

Nonlinear CG is attractive in practice: it does not require matrix storage and performs well
empirically (e.g., faster than GD). Theoretical results are not as strong as AGD—this is a topic for
further research.

5


	Recap
	Efficient implementation of CG
	Extension to non-quadratic functions

