Lecture 13: Conjugate Gradient Methods: Implementation and Extensions

Yudong Chen

1 Recap

Consider \(f(x) = \frac{1}{2}x^\top Ax - b^\top x \), where \(A \succ 0 \). Minimizing \(f \) is equivalent to solving the linear system \(Ax = b \).

The conjugate gradient (CG) method is given by

\[
x_k = \arg \min_{x \in x_0 + \mathcal{K}_k} f(x), \quad k = 1, 2, \ldots,
\]

where \(\mathcal{K}_k := \text{Lin} \{ A(x_0 - x^*), \ldots, A^k(x_0 - x^*) \} \) is the Krylov subspace of order \(k \).

Lemma 1. For any \(k \geq 1 \), we have \(\mathcal{K}_k = \text{Lin} \{ \nabla f(x_0), \ldots, \nabla f(x_{k-1}) \} \).

Lemma 2. For any \(0 \leq i < k \), we have \(\langle \nabla f(x_k), \nabla f(x_i) \rangle = 0 \).

Corollary 1. CG finds \(x^* = \arg \min_{x \in \mathbb{R}^d} f(x) \) in at most \(d \) iterations.

Corollary 2. \(\forall p \in \mathcal{K}_k, \langle \nabla f(x_k), p \rangle = 0 \).

2 Efficient implementation of CG

Define \(\delta_i := x_{i+1} - x_i \).

Lemma 3. For all \(k \geq 1 \), \(\mathcal{K}_k = \text{Lin} \{ \delta_0, \delta_1, \ldots, \delta_{k-1} \} \).

Proof. Suppose \(\text{Lin} \{ \delta_0, \delta_1, \ldots, \delta_{k-1} \} = \mathcal{K}_k \). Want to show \(\text{Lin} \{ \delta_0, \delta_1, \ldots, \delta_k \} = \mathcal{K}_{k+1} \).

- If \(\nabla f(x_k) = 0 \): In the proof of Lemma 1 we showed that \(\mathcal{K}_{k+1} = \mathcal{K}_k \) and \(x_{k+1} = x_k = x^* \). Hence \(\text{Lin} \{ \delta_0, \delta_1, \ldots, \delta_{k-1}, \delta_k \} = \text{Lin} \{ \delta_0, \delta_1, \ldots, \delta_{k-1}, 0 \} = \mathcal{K}_k = \mathcal{K}_{k+1} \).

- If \(\nabla f(x_k) \neq 0 \): In the proof of Lemma 1 we showed that

\[
x_{k+1} = x_0 + \sum_{i=1}^{k} \beta_{i,k+1} A^i(x_0 - x^*) + \beta_{k+1,k+1} A^{k+1}(x_0 - x^*)
\]

for some \(\beta_{k+1,k+1} \neq 0 \), hence

\[
\delta_k = x_{k+1} - x_k = \underbrace{x_0 - x_k}_{\in \mathcal{K}_k} + \sum_{i=1}^{k} \beta_{i,k+1} A^i(x_0 - x^*) + \beta_{k+1,k+1} A^{k+1}(x_0 - x^*),
\]

where \(\mathcal{K}_k := \text{Lin} \{ A(x_0 - x^*), \ldots, A^k(x_0 - x^*) \} \) is the Krylov subspace of order \(k \).
hence
\[
\text{Lin}\{\delta_0, \delta_1, \ldots, \delta_{k-1}, \delta_k\} = \text{Lin}\{K_k \cup \delta_k\} \\
= \text{Lin}\{K_k \cup A^{k+1}(x_0 - x^*)\} \\
= K_{k+1}.
\]

\[\square\]

Lemma 4 (Lem 1.3.3 in Nes book). For any \(k, i \geq 0, k \neq i\), the vectors \(\delta_i, \delta_k\) are conjugate w.r.t. \(A\), i.e., \(\langle A\delta_k, \delta_i \rangle = 0\).

Proof. Assume w.l.o.g. \(k > i\). Then
\[
\langle A\delta_k, \delta_i \rangle = \langle A(x_{k+1} - x_k), \delta_i \rangle \\
= \langle A(x_{k+1} - x^*) - A(x_k - x^*), \delta_i \rangle \\
= \langle \nabla f(x_{k+1}), \delta_i \rangle - \langle \nabla f(x_k), \delta_i \rangle \\
= 0 - 0,
\]
where in the last step we use \(\delta_i \in K_{i+1} \subseteq K_k \subseteq K_{k+1}\) and Corollary 2. \[\square\]

We are ready to derive an explicit formula for CG iterate \(x_{k+1}\). As \(K_k = \text{Lin}\{\delta_0, \ldots, \delta_{k-1}\}\), we can express \(x_{k+1} \in x_0 + K_{k+1}\) as
\[
x_{k+1} = \underbrace{x_k}_{\in x_0 + K_k} - h_k \underbrace{\nabla f(x_k)}_{\in K_{k+1} \setminus K_k} + \sum_{j=0}^{k-1} \underbrace{\alpha_j \delta_j}_{\in K_k}
\]
for some scalars \(h_k, \alpha_0, \alpha_1, \ldots, \alpha_{k-1}\). Equivalently,
\[
\delta_k = -h_k \nabla f(x_k) + \sum_{j=0}^{k-1} \alpha_j \delta_j.
\]

To make the above implementable, we need to determine \(h_k\) and \(\{\alpha_j\}\). For \(i = 0, 1, \ldots, k - 1\), taking the inner product with \(A\delta_i\) gives
\[
0 = \langle A\delta_i, \delta_k \rangle \\
= -h_k \langle A\delta_i, \nabla f(x_k) \rangle + \sum_{j=0}^{k-1} \alpha_j \langle A\delta_j, \delta_i \rangle \\
= -h_k \langle A\delta_i, \nabla f(x_k) \rangle + \alpha_i \langle A\delta_i, \delta_i \rangle.
\]

But
\[
A\delta_i = A(x_{i+1} - x^*) - A(x_i - x^*) = \nabla f(x_{i+1}) - \nabla f(x_i).
\]
Combining the last two equations gives
\[
h_k \langle \nabla f(x_{i+1}) - \nabla f(x_i), \nabla f(x_k) \rangle = \alpha_i \langle A\delta_i, \delta_i \rangle.
\]
• For \(i = 0, 1, \ldots, k - 2 \), we have \(\langle \nabla f(x_{i+1}), \nabla f(x_k) \rangle = \langle \nabla f(x_i), \nabla f(x_k) \rangle = 0 \) by Lemma 2, hence
\[
0 = \alpha_i \langle A\delta_i, \delta_i \rangle \quad \Rightarrow \quad \alpha_i = 0.
\]

• For \(i = k - 1 \), we have
\[
h_k \langle \nabla f(x_k) - \nabla f(x_{k-1}), \nabla f(x_k) \rangle = \alpha_{k-1} \langle A\delta_{k-1}, \delta_{k-1} \rangle.
\]
Note that \(\langle \nabla f(x_{k-1}), \nabla f(x_k) \rangle = 0 \), hence
\[
\alpha_{k-1} = \frac{h_k \| \nabla f(x_k) \|^2_2}{\langle A\delta_{k-1}, \delta_{k-1} \rangle} = \frac{h_k \| \nabla f(x_k) \|^2_2}{\langle \nabla f(x_k) - \nabla f(x_{k-1}), \delta_{k-1} \rangle}.
\]
Combining, we obtain that
\[
x_{k+1} = x_k - h_k \nabla f(x_k) + \alpha_{k-1} \delta_{k-1}
\]
(1)
\[
= x_k - h_k \left(\nabla f(x_k) - \frac{\| \nabla f(x_k) \|^2_2}{\langle \nabla f(x_k) - \nabla f(x_{k-1}), \delta_{k-1} \rangle} \delta_{k-1} \right),
\]
where \(p_k \in \mathbb{R}^d \) is viewed as the search direction and \(h_k \in \mathbb{R} \) is viewed as the stepsize. Since \(x_k - h p_k \in x_0 + K_{k+1} \) for all \(h \) and \(x_{k+1} \) minimizes \(f(x) \) over \(K_{k+1} \), the stepsize \(h_k \) is given by exact line search:
\[
h_k = \arg \min_{h \in \mathbb{R}} f(x_k - h p_k).
\]

Explicit form of CG: In summary, CG can be implemented as
\[
x_{k+1} = x_k - h_k p_k,
\]
where
\[
p_k = \nabla f(x_k) - \frac{\| \nabla f(x_k) \|^2_2}{\langle \nabla f(x_k) - \nabla f(x_{k-1}), \delta_{k-1} \rangle} \delta_{k-1},
\]
\[
\delta_{k-1} = x_k - x_{k-1},
\]
\[
h_k = \arg \min_{h \in \mathbb{R}} f(x_k - h p_k).
\]
Note that the exact line search step involves optimizing a one-dimensional quadratic function and can be computed in closed form.

Question 1. How much storage is needed in CG? How much computation per iteration?

Remark 1 (Conjugacy). The search directions \(p_k = -\frac{1}{h_k} \delta_k \) are conjugate w.r.t. \(A \):
\[
\langle A p_k, p_i \rangle = 0, \quad \forall k \neq i
\]
since \(\langle A \delta_k, \delta_i \rangle = 0 \) (Lemma 4).
Remark 2 (Relation to heavy-ball). From (1) we have
\[x_{k+1} = x_k - h_k \nabla f(x_k) + \alpha_{k-1}(x_k - x_{k-1}), \]
which resembles the heavy-ball method (gradient step + momentum step) but with time-varying \(h_k \) and \(\alpha_k \).

Remark 3. CG does not require knowing the smoothness and strong convexity parameters \(L \) and \(m \).

Remark 4. CG for quadratic \(f \) has a very rich convergence theory beyond the asymptotic linear rate. For example:

- If \(A \) has \(r \) distinct eigenvalues, CG terminates in at most \(r \) iterations.
- More generally, CG converges fast when the eigenvalues of \(A \) have a clustering structure.
- Precondition CG: one may transform the problem so that \(A \) has a more favorable eigenvalue distribution.

We will not delve into these results; see Chapter 5.1 of Nocedal-Wright.

3 Extension to non-quadratic functions

We have written CG in a form that only involves the gradient of \(f \), without explicit dependence on the quadratic structure of \(f \). This allows extension to non-quadratic functions. (Such extensions are known as “nonlinear CG”, since \(\nabla f(x) \) is nonlinear in \(x \).)

Algorithm 1 Nonlinear CG

- Initial search direction: \(p_0 = \nabla f(x_0) \).
- For \(k = 0, 1, \ldots \)
 - Set \(x_{k+1} = x_k - h_k p_k \),
 where \(h_k \) is computed by (exact or inexact) line search.
 - Compute the next search direction as \(p_{k+1} = \nabla f(x_{k+1}) - \beta_k p_k \),
 with some specific choice of \(\beta_k \) (see below).

There are different ways of choosing \(\beta_k \)’s:

- Dai-Yuan: \(\beta_k = \frac{\|\nabla f(x_{k+1})\|^2}{\langle \nabla f(x_{k+1}) - \nabla f(x_k), p_k \rangle} \). (equivalent to the \(\alpha_{k-1} \) that we derived for quadratic \(f \))
- Fletcher-Rieves: \(\beta_k = -\frac{\|\nabla f(x_{k+1})\|^2}{\|\nabla f(x_k)\|^2} \).
- Polak-Ribiere: \(\beta_k = -\frac{\langle \nabla f(x_{k+1}), \nabla f(x_{k+1}) - \nabla f(x_k) \rangle}{\|\nabla f(x_k)\|^2} \).
All of above lead to the same results in the case of quadratic f. See Chapter 5.2 of Nocedal-Wright for more on nonlinear CG.

Nonlinear CG is attractive in practice: it does not require matrix storage and performs well empirically (e.g., faster than GD). Theoretical results are not as strong as AGD—this is a topic for further research.