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Lecture 13: Conjugate Gradient Methods:
Implementation and Extensions

Yudong Chen

1 Recap

Consider f(x) = 1x"Ax — bTx, where A >~ 0. Minimizing f is equivalent to solving the linear
system Ax = b.
The conjugate gradient (CG) method is given by

X = arg min x), k=1,2,...,
k ngxO+/Ckf( )

where Ky := Lin { A(xg — x*), ..., AF(xo — x*) } is the Krylov subspace of order k.
Lemma 1. Forany k > 1, we have Ky = Lin{V f(x0),..., Vf(xx_1)}.

Lemma 2. Forany 0 < i < k, we have (V f(xx), Vf(x;)) = 0.

Corollary 1. CG finds x* = arg min, g« f(x) in at most d iterations.

Corollary 2. Vp € Ky, (Vf(xx),p) = 0.

2 Efficient implementation of CG

Define 6; := x;11 — x;.

Lemma 3. Forallk > 1, K = Lin {0, d1,..., 01} -

Proof. Suppose Lin {d, 1, . ..,0—1} = Ki. Want to show Lin {dg, 61, ..., 0} = Kii1.

e If Vf(xx) = 0: In the proof of Lemma 1 we showed that K1 = Ky and x4 = xp = x*.
Hence Lin {50, 51, e ,(Sk,l, (Sk} = Lin {(50, (51, ce ,§k,1,0} = ICk = ICkJrl.

e If Vf(xx) # 0: In the proof of Lemma 1 we showed that
k . .
X1 = X0+ Y, Bixkr1 A (x0 — x°) + Bry1 e A (x0 — x7)
i=1
for some Byi1 k1 7 0, hence

k
j k+1
5k = Xk41 — X = X0 — XE—F ;‘Bi/k+1Al(x0 — x*) +,Bk+1,k+1A T (XO — x*),
Xy —

ek
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hence
Lin{dy,61,...,6k_1,0x} = Lin { U o}
= Lin {ICk U AR (x — x*)}
= le+1-
O

Lemma 4 (Lem 1.3.3 in Nes book). Forany k,i > 0,k # i, the vectors J;, by are conjugate w.r.t. A, i.e.,
(Ady, 6;) = 0.

Proof. Assume w.l.o.g. k > i. Then

(Ady, 6i) = (A(xk1 — xk), 6i)
— (A1 — ¥°) — Alxi — x°),6)
<Vf(Xk+1) i) = (Vf(xx), 1)
=0-0,
where in the last step we use é; € K;11 C Ky C Ki4q and Corollary 2. O

We are ready to derive an explicit formula for CG iterate xy;1. As Ky = Lin {dp, ..., 1}, we
can express X1 € Xo + K1 as

k-1
Xk+1 = Xk — thf(xk) + w;d;
Lo
Ex0+Kx €K1\ Kk N——
ek

for some scalars hy, ag, a1, . . ., &x—1. Equivalently,
k—1
O = —thf(xk) + Z 06j5j.
j=0

To make the above implementable, we need to determine /; and {lXj}. Fori =0,1,...,k—1,
taking the inner product with AJ; gives

0 = (Adj, o) Lemma 4
k—1
= —hk <A(51’, Vf(xk)> + Z K; <A5], §z>
=0
= —]’lk <A(5,’, Vf(xk)) + «; <A(5,’, (51> . Lemma 4

But
Abi = A(xip1 — x%) — A(x; — x*) = Vf(xi11) — Vf(x;).

Combining the last two equations gives

I (Vf(xip1) = VF(xi), VF(xk)) = a; (Ad;, ;) -
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e Fori =0,1,...,k—2, we have (Vf(xi11), Vf(x¢)) = (Vf(xi), Vf(xx)) = 0 by Lemma 2,

hence o
0= 4% <A5i,51’> £> o, = 0.

e Fori =k —1,wehave

I (Vf(xx) = Vf(xe1), VI(xx)) = a1 (A1, 0k1) -
#0as A>0

Note that (V f(xx_1), Vf(x¢)) = 0, hence

RANENI I ||V £ ()3

s (Abk_1,0k-1)  (Vf(xx) = Vf(x-1),0,1)

Combining, we obtain that
X1 = Xk — IV f () + @16k 1)

_ IV x5
T (Vf ) ) Vf<xki>,5k_1>‘5“>'

=Pk

where p; € R? is viewed as the search direction and h; € R is viewed as the stepsize. Since
Xy — hpi € xo + Ky for all h and xy 1 minimizes f(x) over Ky, 1, the stepsize /i is given by exact
line search:

hy = argrhrg]lgf(xk — hpy).

Explicit form of CG: In summary, CG can be implemented as

Xgp1 = Xk — hepr,
where

IVf (x5
Vf(xx) = Vf(xe-1),0k—1)

Pr = vf(xk) - < Ok-1,

Ok—1 = Xp — Xp—1,

hy = arglglréllgf(xk — hpy).

Note that the exact line search step involves optimizing a one-dimensional quadratic function and
can be computed in closed form.

Question 1. How much storage is needed in CG? How much computation per iteration?

Remark 1 (Conjugacy). The search directions p; = —hikék are conjugate w.r.t. A:

<Apk, pz> = 0, Vk 7& i

since (Adg, 6;) = 0 (Lemma 4).
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Remark 2 (Relation to heavy-ball). From (1) we have

Xip1 = X — eV f (%) + a1 (e — x21),

which resembles the heavy-ball method (gradient step + momentum step) but with time-varying
hy and ay.

Remark 3. CG does not require knowing the smoothness and strong convexity parameters L and
m.

Remark 4. CG for quadratic f has a very rich convergence theory beyond the asymptotic linear
rate. For example:

¢ If A has r distinct eigenvalues, CG terminates in at most r iterations.
* More generally, CG converges fast when the eigenvalues of A have a clustering structure.

¢ Precondition CG: one may transform the problem so that A has a more favorable eigenvalue
distribution.

We will not delve into these results; see Chapter 5.1 of Nocedal-Wright.

3 Extension to non-quadratic functions

We have written CG in a form that only involves the gradient of f, without explicit dependence on
the quadratic structure of f. This allows extension to non-quadratic functions. (Such extensions
are known as “nonlinear CG”, since V f(x) is nonlinear in x.)

Algorithm 1 Nonlinear CG

e Initial search direction: py = V f(xo).
e Fork=0,1,...

- Set
Xky1 = Xk — hepr,
where 5 is computed by (exact or inexact) line search.

- Compute the next search direction as

Pk+1 = Vf(Xk1) — BrPrs

with some specific choice of i (see below).

There are different ways of choosing B’s:

IV f (e I3
V f (xk11) =V f (xx),px

VGl
IVF(xo)l3

e Dai-Yuan: By = . (equivalent to the «;_; that we derived for quadratic f)
7 y- &g q

¢ Fletcher-Rieves: By =

e Polak-Ribiere: By = — (Vf (xk“)"‘z; ((i’giéfvf ()



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

All of above lead to the same results in the case of quadratic f. See Chapter 5.2 of Nocedal-Wright
for more on nonlinear CG.

Nonlinear CG is attractive in practice: it does not require matrix storage and performs well
empirically (e.g., faster than GD). Theoretical results are not as strong as AGD—this is a topic for
turther research.
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