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Lecture 14: Constrained Optimization over Closed Convex
Sets

Yudong Chen

Consider the constrained problem

min f (x), (P)

where f is continuously differentiable and X C dom(f) C R is a closed, convex and nonempty
set.
Recall:

Definition 1 (Local minimizer). We say that x* € X C dom(f) is a local minimizer/solution of (P) if
there exists a neighborhood Ny of x* such that we have f(x) > f(x*),Vx € Ny- N X.

For constrained problem, if x* is a (local) minimizer of (P), it is not necessary that V f(x*) = 0.
Example: f(x) = x, X = [2,3],x* =2,Vf(x*) =1 #0.

1 Optimality condition

A cone is a set that satisfies the following property: if z is in the set, then for any t > 0, ¢z is also in
the set.
The optimality condition for constrained optimization would involve a special cone.

Definition 2 (Normal cone). Let X be a closed convex set. At any point x € X, the normal cone
Ny (x) is defined by

Ny(x) = {p ERY: (py—x) <0,Vy € X}.
Note that by definition,
—Vf(x) € Ny(x) <= (—=Vf(x),y—x) <0,Vy € X. (1)
If X = R, then (1) reduces to Vf(x*) = 0.
Theorem 1 (Thm 7.2 in Wright-Recht). Consider the problem (P).
1. (1st-order necessary condition) If x* € X is a local solution to (P), then —V f(x*) € Ny (x*).

2. (1st-order sufficient condition) If f is convex, then —V f(x*) € Ny (x*) implies that x* is a global
solution to (P).

Any point x that satisfies (1) is called a stationary point for the constrained problem (P).
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Ilustration of normal cones:

Yot Noglee)

e it (X0
thea Nx(ﬂ) = { 0?] .

Proof. Part 1: Want to show: x* is a local solution = —V f(x*) € Ny (x*).
Proof by contradiction. Suppose —V f(x*) ¢ Ny (x*). By definition of Ny (x*), there exists
y € X such that

For each & > 0, by Taylor’s Theorem we have
f(¥ +aly=x)) = (&) +a (VA" +yaly —x7)),y - x*)
N——
=(1—a)x*+ayeX

for some 7y € (0,1). Because V f is continuous, for all « > 0 sufficiently small:

(Vf(' +aly — ')y —x) < —5.
It follows that
f(x +aly—x9) < f(x") = 5 < fx),

which means x* cannot be a local solution, a contradiction.
Part 2: Want to show:

fisconvex and —Vf(x*) € Ny(x*) = x" is a global solution
) (ii)

From (i): Vx,y € R%: f(y) > f(x) + (Vf(x),y — x). In particular, for x = x*:
vye X fly) 2 f(x7) +(Vf(x")y —x7).

From (ii):
Ve X: (=Vf(x"),y—x") <0<= (Vf(x"),y—x") > 0.

(i)+(ii) gives f(y) > f(x*),Vy € X. O
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For strongly convex f, the minimizer is unique.

Theorem 2 (Thm 7.3 in Wright-Recht). Consider (P) and assume, in addition, that f is strongly convex.
Then (P) has a unique global minimizer. Moreover, x* is the global minimizer if and only if —V f(x*) €
N X (x * ) .

Proof. Recall that Strong convexity means there exists m > 0 such that
m
Yxy f(y) 2 fO0) (V0 —x) + 5 ly =«

Existence of global solution: Fix an arbitrary x € X'. Consider any y such that f(y) < f(x).
We have

ly—xlB < 2 (f0) — Fx) — (Vf )y~ )

m \ e —
<0

< — V), lly — x|, Cauchy-Schwarz

SRS

Hence 5
ly =l = V()] < co.

Thus, theset {y € X' | f(y) < f(x)} is closed and bounded = compact = a global minimizer
x* exists by Weierstrass theorem.

“only if” part: follows from Theorem 1.

“if part” and uniqueness. Apply strong convexity to x = x*:

Wy e X f(y) 2 f(x) + (VF(x )y —x) + 2y — I

>0

* m *
> f()+ 5y = I3,

where (Vf(x*),y —x*) > 0 because —V f(x*) € Nx(x*). Therefore, f(y) > f(x*), and equality
holds if and only if y = x*. O
2 Euclidean (orthogonal) projection

The Euclidean projection of x onto the (closed and convex) set X is defined
as

P (x) = argmin {[y — x|}
yek

.1 )
= argmin 5 ly —x||5 ¢ -
yeX

By Theorem 2:

* Py(x) exists and is unique, since we are minimizing a strongly convex
function over a closed convex set.
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e Furthermore, Py (x) satisfies the first-order optimality condition
Vye X: (Py(x)—x,y—Px(x)) >0 (2)
0
— (Px(x) —x) € N (Px(x)).
e The converse is also true: if some ¥ satisfies (¥ —x,y — %) > 0,Vy € X,

then we must have ¥ = Py (x).

Equation (2), which fully characterizes Py (x), is also known as the minimum principle. Illustration:

2.1 Examples

Some examples of X for which the associated projection is easy to compute.

2.1.1 Non-negative orthant

X = {x €R?| x > 0element-wise } .

X2

W e e Py )
o x= P

g

t./\ ;"— >(I

Claim 1. Py(x) = max {x, 6}, where the max is elementwise.

Proof. Check (2):

Vy € X :(Py(x) —x,y — Py (x))
d

1 (max{x;,0} — x;) (y; — max{x;,0})

1

0,

v
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where the last inequality holds because

=0 ifx; >0
=—x; >0 ifx; <0

max{x;, 0} — x; {

and

—y—x ifx>0
y;i —max {x;,0}{ 7 S
:yizo ifx; <0

2.1.2 Hyper-rectangle
X={xeR!|Vie{l,...,d}:x; € [a;, b;]}, where a; < b;. See HW4.
A‘X:

a, . --*‘-J\f\"

ay

S |~=~a~-
\r
ko

2.1.3 Euclidean ball
X ={xe€R?||x|, <1}. Then

X, fxe X
Py (x) =

- ifx g X

214 /; ball

X = {x € R?| ||x||; < 1}. Then Py (x) can be computed with O (dlogd) arithmetic operations
(involves sorting).
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7

2.1.5 Probability simplex

X = {x R | x>0,Y%  x; = 1}. (A picture) Similar to ¢ ball. Computable in O (dlogd).

2.2 Py is nonexpansive

Proposition 1 (Prop 7.7 in Wright-Recht). Let X be a closed, convex and nonempty set. Then Py (-) is
a non-expansive operatot, i.e.,

v,y € R |P(x) = Pe(y)ll, < lx —yll,.

[lustrations:

Proof. Equivalently, want to show that

lx = yl5 = [|[Px(x) — Px(y)]5-

We have
I =yl = llx = Pre(x) = (y = Pa(y)) + Pe(x) = Px ()
=[x = Pr(¥) — (v = Px )3 + 1P (x) = P (93
>0
+2(x = Py(x), Px(x) = Px(y)) +2 (y — Px(y), Px(y) — Px(x))
>0 >0

> [P (x) = Px ()l

where we use the minimum principle (2) to lower bound the two inner products. O
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Remark 1 (Firmly nonexpansive). The proof above shows that Py(-) actually satisfies a stronger
property: it is firmly nonexpansive, in the sense that

1P (x) = Pae(y)ll3 + |lx = Pa(x) = (y = Px(y))llz < x = yl3-

In particular, if y € X, then
2 2 2
1P (x) = yllz + [lx = Pe (x) ][z = [lx =yl

and hence the strict inequality || Py (x) — y||§ < ||x— yH% holds whenever x ¢ X.
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