Lecture 14: Constrained Optimization over Closed Convex Sets

Yudong Chen

Consider the constrained problem

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x), \tag{P}
\end{equation*}
$$

where f is continuously differentiable and $\mathcal{X} \subseteq \operatorname{dom}(f) \subseteq \mathbb{R}^{d}$ is a closed, convex and nonempty set.

Recall:
Definition 1 (Local minimizer). We say that $x^{*} \in \mathcal{X} \subseteq \operatorname{dom}(f)$ is a local minimizer/solution of (P) if there exists a neighborhood $\mathcal{N}_{x^{*}}$ of x^{*} such that we have $f(x) \geq f\left(x^{*}\right), \forall x \in \mathcal{N}_{x^{*}} \cap \mathcal{X}$.

For constrained problem, if x^{*} is a (local) minimizer of (P), it is not necessary that $\nabla f\left(x^{*}\right)=0$. Example: $f(x)=x, \mathcal{X}=[2,3], x^{*}=2, \nabla f\left(x^{*}\right)=1 \neq 0$.

1 Optimality condition

A cone is a set that satisfies the following property: if z is in the set, then for any $t>0, t z$ is also in the set.

The optimality condition for constrained optimization would involve a special cone.
Definition 2 (Normal cone). Let \mathcal{X} be a closed convex set. At any point $x \in \mathcal{X}$, the normal cone $N_{\mathcal{X}}(x)$ is defined by

$$
N_{\mathcal{X}}(x)=\left\{p \in \mathbb{R}^{d}:\langle p, y-x\rangle \leq 0, \forall y \in \mathcal{X}\right\} .
$$

Note that by definition,

$$
\begin{equation*}
-\nabla f(x) \in N_{\mathcal{X}}(x) \Longleftrightarrow\langle-\nabla f(x), y-x\rangle \leq 0, \forall y \in \mathcal{X} \tag{1}
\end{equation*}
$$

If $\mathcal{X}=\mathbb{R}^{d}$, then (1) reduces to $\nabla f\left(x^{*}\right)=0$.
Theorem 1 (Thm 7.2 in Wright-Recht). Consider the problem (P).

1. (1st-order necessary condition) If $x^{*} \in \mathcal{X}$ is a local solution to (P), then $-\nabla f\left(x^{*}\right) \in N_{\mathcal{X}}\left(x^{*}\right)$.
2. (1st-order sufficient condition) If f is convex, then $-\nabla f\left(x^{*}\right) \in N_{\mathcal{X}}\left(x^{*}\right)$ implies that x^{*} is a global solution to (P).

Any point x that satisfies (1) is called a stationary point for the constrained problem (P).

Illustration of normal cones:

Proof. Part 1: Want to show: x^{*} is a local solution $\Longrightarrow-\nabla f\left(x^{*}\right) \in N_{\mathcal{X}}\left(x^{*}\right)$.
Proof by contradiction. Suppose $-\nabla f\left(x^{*}\right) \notin N_{\mathcal{X}}\left(x^{*}\right)$. By definition of $N_{\mathcal{X}}\left(x^{*}\right)$, there exists $y \in \mathcal{X}$ such that

$$
\begin{aligned}
& \left\langle-\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq \delta>0 \\
\Longleftrightarrow & \left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \leq-\delta
\end{aligned}
$$

For each $\alpha>0$, by Taylor's Theorem we have

$$
f(\underbrace{x^{*}+\alpha\left(y-x^{*}\right)}_{=(1-\alpha) x^{*}+\alpha y \in \mathcal{X}})=f\left(x^{*}\right)+\alpha\left\langle\nabla f\left(x^{*}+\gamma \alpha\left(y-x^{*}\right)\right), y-x^{*}\right\rangle
$$

for some $\gamma \in(0,1)$. Because ∇f is continuous, for all $\alpha>0$ sufficiently small:

$$
\left\langle\nabla f\left(x^{*}+\gamma \alpha\left(y-x^{*}\right)\right), y-x^{*}\right\rangle \leq-\frac{\delta}{2} .
$$

It follows that

$$
f\left(x^{*}+\alpha\left(y-x^{*}\right)\right) \leq f\left(x^{*}\right)-\frac{\alpha \delta}{2}<f\left(x^{*}\right)
$$

which means x^{*} cannot be a local solution, a contradiction.
Part 2: Want to show:

$$
\underbrace{f \text { is convex }}_{\text {(i) }} \text { and } \underbrace{-\nabla f\left(x^{*}\right) \in N_{\mathcal{X}}\left(x^{*}\right)}_{\text {(ii) }} \Longrightarrow x^{*} \text { is a global solution }
$$

From (i): $\forall x, y \in \mathbb{R}^{d}: f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$. In particular, for $x=x^{*}$:

$$
\forall y \in \mathcal{X}: \quad f(y) \geq f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle .
$$

From (ii):

$$
\forall y \in \mathcal{X}: \quad\left\langle-\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \leq 0 \Longleftrightarrow\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0 .
$$

(i)+(ii) gives $f(y) \geq f\left(x^{*}\right), \forall y \in \mathcal{X}$.

For strongly convex f, the minimizer is unique.
Theorem 2 (Thm 7.3 in Wright-Recht). Consider (P) and assume, in addition, that f is strongly convex. Then (P) has a unique global minimizer. Moreover, x^{*} is the global minimizer if and only if $-\nabla f\left(x^{*}\right) \in$ $N_{\mathcal{X}}\left(x^{*}\right)$.

Proof. Recall that Strong convexity means there exists $m>0$ such that

$$
\forall x, y: f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{m}{2}\|y-x\|_{2}^{2}
$$

Existence of global solution: Fix an arbitrary $x \in \mathcal{X}$. Consider any y such that $f(y) \leq f(x)$. We have

$$
\begin{aligned}
\|y-x\|_{2}^{2} & \leq \frac{2}{m}(\underbrace{f(y)-f(x)}_{\leq 0}-\langle\nabla f(x), y-x\rangle) \\
& \leq \frac{2}{m}\|\nabla f(x)\|_{2}\|y-x\|_{2} . \quad \text { Cauchy-Schwarz }
\end{aligned}
$$

Hence

$$
\|y-x\|_{2} \leq \frac{2}{m}\|\nabla f(x)\|_{2}<\infty
$$

Thus, the set $\{y \in \mathcal{X} \mid f(y) \leq f(x)\}$ is closed and bounded \Longrightarrow compact \Longrightarrow a global minimizer x^{*} exists by Weierstrass theorem.
"only if" part: follows from Theorem 1.
"if part" and uniqueness. Apply strong convexity to $x=x^{*}$:

$$
\begin{aligned}
\forall y \in \mathcal{X}: f(y) & \geq f\left(x^{*}\right)+\underbrace{\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle}_{\geq 0}+\frac{m}{2}\left\|y-x^{*}\right\|_{2}^{2} \\
& \geq f\left(x^{*}\right)+\frac{m}{2}\left\|y-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

where $\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0$ because $-\nabla f\left(x^{*}\right) \in N_{\mathcal{X}}\left(x^{*}\right)$. Therefore, $f(y) \geq f\left(x^{*}\right)$, and equality holds if and only if $y=x^{*}$.

2 Euclidean (orthogonal) projection

The Euclidean projection of x onto the (closed and convex) set \mathcal{X} is defined as

$$
\begin{aligned}
P_{\mathcal{X}}(x) & =\underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{\|y-x\|_{2}\right\} \\
& =\underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{\frac{1}{2}\|y-x\|_{2}^{2}\right\} .
\end{aligned}
$$

By Theorem 2:

- $P_{\mathcal{X}}(x)$ exists and is unique, since we are minimizing a strongly convex function over a closed convex set.
- Furthermore, $P_{\mathcal{X}}(x)$ satisfies the first-order optimality condition

$$
\begin{align*}
\forall y \in \mathcal{X}: & \left\langle P_{\mathcal{X}}(x)-x, y-P_{\mathcal{X}}(x)\right\rangle \geq 0 \tag{2}\\
& \Uparrow \\
& -\left(P_{\mathcal{X}}(x)-x\right) \in N_{\mathcal{X}}\left(P_{\mathcal{X}}(x)\right) .
\end{align*}
$$

- The converse is also true: if some \bar{x} satisfies $\langle\bar{x}-x, y-\bar{x}\rangle \geq 0, \forall y \in \mathcal{X}$, then we must have $\bar{x}=P_{\mathcal{X}}(x)$.
Equation (2), which fully characterizes $P_{\mathcal{X}}(x)$, is also known as the minimum principle. Illustration:

2.1 Examples

Some examples of \mathcal{X} for which the associated projection is easy to compute.

2.1.1 Non-negative orthant

$\mathcal{X}=\left\{x \in \mathbb{R}^{d} \mid x \geq 0\right.$ element-wise $\}$.

Claim 1. $P_{\mathcal{X}}(x)=\max \{x, \overrightarrow{0}\}$, where the max is elementwise.
Proof. Check (2):

$$
\begin{aligned}
\forall y \in \mathcal{X} & :\left\langle P_{\mathcal{X}}(x)-x, y-P_{\mathcal{X}}(x)\right\rangle \\
& =\sum_{i=1}^{d}\left(\max \left\{x_{i}, 0\right\}-x_{i}\right)\left(y_{i}-\max \left\{x_{i}, 0\right\}\right) \\
& \geq 0
\end{aligned}
$$

where the last inequality holds because

$$
\max \left\{x_{i}, 0\right\}-x_{i} \begin{cases}=0 & \text { if } x_{i} \geq 0 \\ =-x_{i}>0 & \text { if } x_{i}<0\end{cases}
$$

and

$$
y_{i}-\max \left\{x_{i}, 0\right\} \begin{cases}=y_{i}-x_{i} & \text { if } x_{i} \geq 0 \\ =y_{i} \geq 0 & \text { if } x_{i}<0\end{cases}
$$

2.1.2 Hyper-rectangle

$\mathcal{X}=\left\{x \in \mathbb{R}^{d} \mid \forall i \in\{1, \ldots, d\}: x_{i} \in\left[a_{i}, b_{i}\right]\right\}$, where $a_{i}<b_{i}$. See HW4.

2.1.3 Euclidean ball

$\mathcal{X}=\left\{x \in \mathbb{R}^{d} \mid\|x\|_{2} \leq 1\right\}$. Then

$$
P_{\mathcal{X}}(x)= \begin{cases}x, & \text { if } x \in \mathcal{X} \\ \frac{x}{\|x\|_{2}} & \text { if } x \notin \mathcal{X}\end{cases}
$$

Exercise 1. What if the ball was of radius $R>0$? What if the ball was not centered at zero?

2.1.4 ℓ_{1} ball

$\mathcal{X}=\left\{x \in \mathbb{R}^{d} \mid\|x\|_{1} \leq 1\right\}$. Then $P_{\mathcal{X}}(x)$ can be computed with $O(d \log d)$ arithmetic operations (involves sorting).

2.1.5 Probability simplex

$\mathcal{X}=\left\{x \in \mathbb{R}^{d} \mid x \geq 0, \sum_{i=1}^{d} x_{i}=1\right\}$. (A picture) Similar to ℓ_{1} ball. Computable in $O(d \log d)$.

2.2 $P_{\mathcal{X}}$ is nonexpansive

Proposition 1 (Prop 7.7 in Wright-Recht). Let \mathcal{X} be a closed, convex and nonempty set. Then $P_{\mathcal{X}}(\cdot)$ is a non-expansive operator, i.e.,

$$
\forall x, y \in \mathbb{R}^{d}: \quad\left\|P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\|_{2} \leq\|x-y\|_{2}
$$

Illustrations:

Proof. Equivalently, want to show that

$$
\|x-y\|_{2}^{2} \geq\left\|P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\|_{2}^{2} .
$$

We have

$$
\begin{aligned}
\|x-y\|_{2}^{2}= & \left\|x-P_{\mathcal{X}}(x)-\left(y-P_{\mathcal{X}}(y)\right)+P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\|_{2}^{2} \\
= & \underbrace{\left\|x-P_{\mathcal{X}}(x)-\left(y-P_{\mathcal{X}}(y)\right)\right\|_{2}^{2}}_{\geq 0}+\left\|P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\|_{2}^{2} \\
& +2 \underbrace{\left\langle x-P_{\mathcal{X}}(x), P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\rangle}_{\geq 0}+2 \underbrace{\left\langle y-P_{\mathcal{X}}(y), P_{\mathcal{X}}(y)-P_{\mathcal{X}}(x)\right\rangle}_{\geq 0} \\
\geq & \left\|P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\|_{2}^{2},
\end{aligned}
$$

where we use the minimum principle (2) to lower bound the two inner products.

Remark 1 (Firmly nonexpansive). The proof above shows that $P_{\mathcal{X}}(\cdot)$ actually satisfies a stronger property: it is firmly nonexpansive, in the sense that

$$
\left\|P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\|_{2}^{2}+\left\|x-P_{\mathcal{X}}(x)-\left(y-P_{\mathcal{X}}(y)\right)\right\|_{2}^{2} \leq\|x-y\|_{2}^{2} .
$$

In particular, if $y \in \mathcal{X}$, then

$$
\left\|P_{\mathcal{X}}(x)-y\right\|_{2}^{2}+\left\|x-P_{\mathcal{X}}(x)\right\|_{2}^{2} \leq\|x-y\|_{2}^{2}
$$

and hence the strict inequality $\left\|P_{\mathcal{X}}(x)-y\right\|_{2}^{2}<\|x-y\|_{2}^{2}$ holds whenever $x \notin \mathcal{X}$.

