Lecture 15: Projected Gradient Descent

Yudong Chen

Consider the problem

\[
\min_{x \in \mathcal{X}} f(x),
\]

(P)

where \(f \) is continuously differentiable and \(\mathcal{X} \subseteq \text{dom}(f) \subseteq \mathbb{R}^n \) is a closed, convex, nonempty set. In this lecture, we further assume \(f \) is \(L \)-smooth (w.r.t. \(\| \cdot \|_2 \)).

1 Projected gradient descent and gradient mapping

Recall the first-order condition for \(L \)-smoothness:

\[
\forall x, y : \quad f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \| y - x \|_2^2.
\]

For unconstrained problem, recall that each iteration of gradient descent (GD) minimizes the RHS above:

\[
\text{(GD)} \quad x_{k+1} = \arg\min_{y \in \mathbb{R}^d} \left\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{L}{2} \| y - x_k \|_2^2 \right\}
\]

\[
= x_k - \frac{1}{L} \nabla f(x_k).
\]

Projected Gradient Descent (PGD) For constrained problem, we consider PGD, which minimizes the RHS of (1) over the feasible set \(\mathcal{X} \):

\[
\text{(PGD)} \quad x_{k+1} = \arg\min_{y \in \mathcal{X}} \left\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{L}{2} \| y - x_k \|_2^2 \right\}
\]

\[
= \arg\min_{y \in \mathcal{X}} \left\{ \frac{L}{2} \| y - x_k + \frac{1}{L} \nabla f(x_k) \|_2^2 \right\}
\]

\[
= P_{\mathcal{X}} \left(x_k - \frac{1}{L} \nabla f(x_k) \right).
\]

As in GD, we can also use some other stepsize \(\frac{1}{\eta} \) with \(\eta \geq L \):

\[
x_{k+1} = P_{\mathcal{X}} \left(x_k - \frac{1}{\eta} \nabla f(x_k) \right).
\]

It will be useful later to recall that Euclidean projection is characterized by the minimum principle

\[
\forall y \in \mathcal{X} : \quad \langle P_{\mathcal{X}}(x) - x, y - P_{\mathcal{X}}(x) \rangle \geq 0.
\]

(2)
1.1 Gradient mapping

Many results for GD can be generalized to PGD, where the role of the gradient is replaced by the gradient mapping defined below.

Definition 1 (Gradient Mapping). Suppose $\mathcal{X} \subseteq \mathbb{R}^d$ is closed, convex and nonempty, and f is differentiable. Given $\eta > 0$, the gradient mapping $G_\eta : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined by

$$G_\eta(x) = \eta \left(x - P_\mathcal{X} \left(x - \frac{1}{\eta} \nabla f(x) \right) \right) \quad \text{for } x \in \mathbb{R}^d.$$

Using the above definition, we can write PGD in a form that resembles GD:

$$x_{k+1} = x_k - \frac{1}{\eta} G_\eta(x_k).$$

The fixed points of PGD are those that satisfy $G_\eta(x) = 0$.

Remark 1. When $\mathcal{X} = \mathbb{R}^d$, $G_\eta(x) = \nabla f(x)$. Hence the gradient mapping generalizes the gradient.

For constrained problems, gradient mapping acts as a “proxy” for the gradient and has properties similar to the gradient.

- If $G_\eta(x) = 0$, then x is a stationary point, meaning that $-\nabla f(x) \in N_\mathcal{X}(x)$. If $\|G_\eta(x)\|_2 \leq \epsilon$, we get a near-stationary point.

- A Descent Lemma holds for PGD: if we use $\eta \geq L$, then $f(x_{k+1}) - f(x_k) \leq -\frac{1}{2\eta} \|G_\eta(x_k)\|_2^2$.

We elaborate below.

1.2 Gradient mapping and stationarity

Let $B_2(z, r) := \{ x \in \mathbb{R}^d : \|x - z\|_2 \leq r \}$ denotes the Euclidean ball of radius r centered at z. For two sets $S_1, S_2 \subseteq \mathbb{R}^d$, let $S_1 + S_2 = \{ x + y : x \in S_1, y \in S_2 \}$ denote their Minkowski sum.

The first lemma says if $\|G_\eta(x)\|_2$ is small, then x almost satisfies the first-order optimality condition and can be considered a near-stationary point.

Lemma 1 (Gradient mapping as a surrogate for stationarity). Consider (P), where f is L-smooth, and \mathcal{X} is closed, convex and nonempty. Denote $\bar{x} = P_\mathcal{X} \left(x - \frac{1}{\eta} \nabla f(x) \right)$, so that $G_\eta(x) = \eta (x - \bar{x})$. If $\|G_\eta(x)\|_2 \leq \epsilon$ for some $\epsilon \geq 0$, then:

$$-\nabla f(\bar{x}) \in N_\mathcal{X}(\bar{x}) + B_2 \left(0, \epsilon \left(\frac{L}{\eta} + 1 \right) \right) \quad \iff \forall u \in \mathcal{X} : \langle -\nabla f(\bar{x}), u - \bar{x} \rangle \leq \epsilon \left(\frac{L}{\eta} + 1 \right) \|u - \bar{x}\|_2 \quad \implies \forall u \in \mathcal{X} \cap B_2(\bar{x}, 1) : \langle -\nabla f(\bar{x}), u - \bar{x} \rangle \leq \epsilon \left(\frac{L}{\eta} + 1 \right).$$
Proof. Suppose that $\|G_\eta(x)\|_2 \leq \epsilon$. By definition:

$$\bar{x} = P_X \left(x - \frac{1}{\eta} \nabla f(x) \right) = \arg\min_{y \in X} \left\{ \frac{1}{2} \| y - \left(x - \frac{1}{\eta} \nabla f(x) \right) \|_2^2 \right\}.$$

Hence \bar{x} satisfies the optimality condition of the minimization problem above:

$$-\left(\bar{x} - x + \frac{1}{\eta} \nabla f(x) \right) \in N_X(\bar{x}).$$

Adding and subtracting $-\frac{1}{\eta} \nabla f(\bar{x})$:

$$-\frac{1}{\eta} \nabla f(\bar{x}) - \left(\bar{x} - x + \frac{1}{\eta} \nabla f(x) - \frac{1}{\eta} \nabla f(\bar{x}) \right) \in N_X(\bar{x}).$$

Note that

$$\|\rho\|_2 = \left\| \frac{\bar{x} - x + \frac{1}{\eta} (\nabla f(x) - \nabla f(\bar{x}))}{-\frac{1}{\eta} G_\eta(x)} \right\|_2 \leq \frac{1}{\eta} \| G_\eta(x) \|_2 + \frac{1}{\eta} \| \nabla f(x) - \nabla f(\bar{x}) \|_2 \leq \frac{1}{\eta} \left(1 + \frac{L}{\eta} \right) \| G_\eta(x) \|_2 \leq \frac{\epsilon}{\eta} \left(1 + \frac{L}{\eta} \right).$$

Hence

$$-\frac{1}{\eta} \nabla f(\bar{x}) \in N_X(\bar{x}) + \rho$$

$$\iff -\nabla f(\bar{x}) \in N_X(\bar{x}) + \eta \rho$$

$$\implies -\nabla f(\bar{x}) \in N_X(\bar{x}) + \mathcal{B}_2 \left(0, \epsilon \left(1 + \frac{L}{\eta} \right) \right).$$
The next lemma shows that \(x^* \) is a stationary point of (P) if and only if \(G_\eta(x^*) = 0 \).

Lemma 2 (Wright-Recht Prop 7.8). Consider (P), where \(f \) is \(L \)-smooth, and \(\mathcal{X} \) is closed, convex and nonempty. Then, \(x^* \in \mathcal{X} \) satisfies the first-order condition \(-\nabla f(x^*) \in N_\mathcal{X}(x^*) \) if and only if \(x^* = P_\mathcal{X} \left(x^* - \frac{1}{\eta} \nabla f(x^*) \right) \) (equivalently, \(G_\eta(x^*) = 0 \)).

Proof. "if" part: Suppose \(G_\eta(x^*) = 0 \). Applying Lemma 1 with \(\epsilon = 0 \) and noting that \(\bar{x} = x^* \), we get \(-\nabla f(x^*) \in N_\mathcal{X}(x^*) \).

- Explicit proof: \(G_\eta(x^*) = 0 \) means

 \[
x^* = P_\mathcal{X} \left(x^* - \frac{1}{\eta} \nabla f(x^*) \right) = \operatorname{argmin}_{y \in \mathcal{X}} \left\{ \frac{1}{2} \left\| y - \left(x^* - \frac{1}{\eta} \nabla f(x^*) \right) \right\|_2^2 \right\}.
 \]

 By first-order optimality condition applied to the above minimization problem, we have

 \[
 N_\mathcal{X}(x^*) \ni -\nabla \left[\frac{1}{2} \left\| y - \left(x^* - \frac{1}{\eta} \nabla f(x^*) \right) \right\|_2^2 \right] y = -\frac{1}{\eta} \nabla f(x^*),
 \]

 which is equivalent to \(N_\mathcal{X}(x^*) \ni -\frac{1}{\eta} \nabla f(x^*) \).

"only if" part: Suppose \(-\nabla f(x^*) \in N_\mathcal{X}(x^*) \). By definition of \(N_\mathcal{X}(x^*) \), we have

\[
\forall y \in \mathcal{X} : \quad 0 \geq \frac{1}{\eta} \langle -\nabla f(x^*), y - x^* \rangle = \langle x^* - \frac{1}{\eta} \nabla f(x^*) - x^*, y - x^* \rangle.
\]

By the minimum principle (2) with \(x = x^* - \frac{1}{\eta} \nabla f(x^*) \), the above inequality implies

\[
x^* = P_\mathcal{X} (x) = P_\mathcal{X} \left(x^* - \frac{1}{\eta} \nabla f(x^*) \right).
\]

\[\square \]

1.3 Sufficient descent property/descent lemma

The gradient mapping also inherits the descent lemma.

Lemma 3 (Thm 2.2.13 in Nes’18). Consider (P), where \(f \) is an \(L \)-smooth function. If \(\eta \geq L \) and \(\bar{x} = x - \frac{1}{\eta} G_\eta(x) \), then:

\[
f(\bar{x}) \leq f(x) - \frac{1}{2\eta} \| G_\eta(x) \|_2^2.
\]

Proof. From the first-order condition for \(L \)-smoothness (Lecture 4, Lemma 1),

\[
f(\bar{x}) \leq f(x) + \langle \nabla f(x), \bar{x} - x \rangle + \frac{\eta}{2} \| \bar{x} - x \|_2^2
\]

\[
= f(x) - \frac{1}{\eta} \langle \nabla f(x), G_\eta(x) \rangle + \frac{1}{2\eta} \| G_\eta(x) \|_2^2 \quad \bar{x} - x = -\frac{1}{\eta} G_\eta(x)
\]

\[
= f(x) - \frac{1}{2\eta} \| G_\eta(x) \|_2^2 + \frac{1}{\eta} \langle G_\eta(x) - \nabla f(x), G_\eta(x) \rangle. \quad \text{add/subtract } \frac{1}{\eta} \langle G_\eta(x), G_\eta(x) \rangle = \frac{1}{\eta} \| G_\eta(x) \|_2^2
\]
It remains to show that \(\langle G_\eta(x) - \nabla f(x), G_\eta(x) \rangle \leq 0 \). Plugging in the definition of \(G_\eta(x) \), we have
\[
\langle G_\eta(x) - \nabla f(x), G_\eta(x) \rangle = \langle \eta \left[x - P_X \left(x - \frac{1}{\eta} \nabla f(x) \right) \right] - \nabla f(x), \eta \left[x - P_X \left(x - \frac{1}{\eta} \nabla f(x) \right) \right] \rangle \\
= \eta^2 \left(x - \frac{1}{\eta} \nabla f(x) - P_X \left(x - \frac{1}{\eta} \nabla f(x) \right), x - P_X \left(x - \frac{1}{\eta} \nabla f(x) \right) \right) \\
= \eta^2 \langle y - P_X(y), x - P_X(y) \rangle \\
\leq 0
\]
by the minimum principle (2).

\[\square \]

2 Convergence guarantees for projected gradient descent

Consider the PGD update
\[
x_{k+1} = P_X \left(x_k - \frac{1}{L} \nabla f(x_k) \right) = x_k - \frac{1}{L} G_L(x_k),
\]
where we fix the stepsize to be \(\frac{1}{L} \), with \(L \) being the smoothness parameter of \(f \).

The convergence guarantees of PGD parallel those of GD.

2.1 Nonconvex case

Suppose \(f \) is \(L \)-smooth.

By the Descent Lemma 3:
\[
f(x_{k+1}) - f(x_k) \leq - \frac{1}{2L} \|G_L(x_k)\|^2.
\]

Summing up over \(k \) and noting that the LHS telescopes:
\[
f(x_{k+1}) - f(x_0) \leq - \frac{1}{2L} \sum_{i=0}^{k} \|G_L(x_i)\|^2.
\]

If \(\bar{f} := \inf_{x \in X} f(x) > -\infty \), then
\[
\frac{1}{2L} \sum_{i=0}^{k} \|G_L(x_k)\|^2 \leq f(x_0) - \bar{f}.
\]

Hence
\[
\min_{0 \leq i \leq k} \|G_L(x_i)\|_2 \leq \sqrt{\frac{2L (f(x_0) - \bar{f})}{k + 1}}.
\]

Equivalently, after at most \(k = \frac{8L (f(x_0) - \bar{f})}{\epsilon^2} \) iterations of PGD, we have
\[
\min_{0 \leq i \leq k} \|G_L(x_i)\|_2 \leq \frac{\epsilon}{2}
\]

\[\Longrightarrow \exists i \in \{1, \ldots, k+1\} : -\nabla f(x_i) \in N_X(x_i) + B_2(0, \epsilon) \]
where the last line follows from Lemma 1.
2.2 Convex case

Suppose f is L-smooth and convex, with a global minimizer x^*.

1) From HW 4: $\|G_L(x_k)\|_2 \leq \|G_L(x_{k-1})\|_2$, $\forall k$. (In HW3 we proved a similar monotonicity property for the gradient.) The result above thus implies

$$\|G_L(x_k)\|_2 \leq \sqrt{\frac{2L(f(x_0) - f)}{k + 1}}.$$

2) From Descent Lemma 3:

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|G_L(x_k)\|_2^2 \leq f(x_k),$$

so the function value is non-increasing in k.

3) Convexity gives the lower bound

$$f(x^*) \geq f(x_k) + \langle \nabla f(x_k), x^* - x_k \rangle,$$

whence

$$f(x_{k+1}) - f(x^*) \leq f(x_{k+1}) - f(x_k) - \langle \nabla f(x_k), x^* - x_k \rangle$$

$$= f(x_{k+1}) - f(x_k) - \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \langle \nabla f(x_k), x_{k+1} - x^* \rangle. \quad (3)$$

(In the analysis of GD, we then use $\nabla f(x_k) = L(x_k - x_{k+1})$ and the 3-point identity). Recall that

$$x_{k+1} = \arg\min_{y \in \mathcal{X}} \left\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{L}{2} \|y - x_k\|_2^2 \right\}.$$

The first-order optimality condition gives

$$\forall y \in \mathcal{X} : \langle \nabla f(x_k) + L(x_{k+1} - x_k), y - x_{k+1} \rangle \geq 0.$$

Taking $y = x^*$ gives

$$\langle \nabla f(x_k), x_{k+1} - x^* \rangle \leq L \langle x_{k+1} - x_k, x^* - x_{k+1} \rangle$$

$$= \frac{L}{2} \left(\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2 - \|x_{k+1} - x_k\|_2^2 \right). \quad 3\text{-point identity}$$

Plugging into (3), we get

$$f(x_{k+1}) - f(x^*) \leq f(x_{k+1}) - f(x_k) - \langle \nabla f(x_k), x_{k+1} - x_k \rangle - \frac{L}{2} \|x_{k+1} - x_k\|_2^2 + \frac{L}{2} \|x_k - x^*\|_2^2 - \frac{L}{2} \|x_{k+1} - x^*\|_2^2$$

$$\leq \frac{L}{2} \|x_k - x^*\|_2^2 - \frac{L}{2} \|x_{k+1} - x^*\|_2^2.$$

We then follow the same steps as in the analysis of GD, summing up and telescoping the above inequality:

$$\sum_{i=0}^{k} (f(x_{i+1}) - f(x^*)) \leq \frac{L}{2} \|x_0 - x^*\|_2^2 - \frac{L}{2} \|x_{k+1} - x^*\|_2^2 \leq \frac{L}{2} \|x_0 - x^*\|_2^2.$$

But LHS $\geq (k + 1) \left(f(x_{k+1}) - f(x^*) \right)$ due to monotonicity $f(x_{k+1}) \leq f(x_k) \leq \cdots \leq f(x_0)$. It follows that

$$f(x_{k+1}) - f(x^*) \leq \frac{L \|x_0 - x^*\|_2^2}{2(k + 1)}.$$
2.3 Strongly convex case

Suppose f is m-strongly convex and L-smooth, with a unique global minimizer x^*.

Since x^* satisfies the first-order optimality condition, we have $P_{\mathcal{X}} \left(x^* - \frac{1}{L} \nabla f(x^*) \right) = x^*$ (Lemma 2). By nonexpansiveness of $P_{\mathcal{X}}$, we have

$$
\| x_{k+1} - x^* \|_2^2 = \| P_{\mathcal{X}} \left(x_k - \frac{1}{L} \nabla f(x_k) \right) - P_{\mathcal{X}} \left(x^* - \frac{1}{L} \nabla f(x^*) \right) \|_2^2
\leq \left\| \left(x_k - \frac{1}{L} \nabla f(x_k) \right) - \left(x^* - \frac{1}{L} \nabla f(x^*) \right) \right\|_2^2
= \| x_k - x^* \|_2^2 + \frac{1}{L^2} \| \nabla f(x_k) - \nabla f(x^*) \|_2^2 - \frac{2}{L} \langle x_k - x^*, \nabla f(x_k) - \nabla f(x^*) \rangle.
$$

But

$$
\| \nabla f(x_k) - \nabla f(x^*) \|_2^2 \leq L \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle
$$

by HW2 Q1, hence

$$
\| x_{k+1} - x^* \|_2^2 \leq \| x_k - x^* \|_2^2 - \frac{1}{L} \langle x_k - x^*, \nabla f(x_k) - \nabla f(x^*) \rangle. \tag{4}
$$

By strong convexity of f:

$$
\begin{align*}
f(x_k) &\geq f(x^*) + \langle \nabla f(x^*), x_k - x^* \rangle + \frac{m}{2} \| x_k - x^* \|_2^2, \\
f(x^*) &\geq f(x_k) + \langle \nabla f(x_k), x^* - x_k \rangle + \frac{m}{2} \| x_k - x^* \|_2^2.
\end{align*}
$$

Adding up the two inequalities gives

$$
\langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle \geq m \| x_k - x^* \|_2^2.
$$

(this is called the strong monotonicity property of the gradient.) Plugging into (4), we obtain

$$
\| x_{k+1} - x^* \|_2^2 \leq \left(1 - \frac{m}{L} \right) \| x_k - x^* \|_2^2 \implies \| x_{k+1} - x^* \|_2^2 \leq \left(1 - \frac{m}{L} \right)^{k+1} \| x_0 - x^* \|_2^2.
$$

Exercise 1. Generalize the above results to PGD with a general stepsize $\frac{1}{\eta}$, where $\eta \geq L$.

3 Extensions

3.1 Acceleration (optional)

Nesterov’s acceleration scheme can be extended to PGD:

$$
\begin{align*}
y_k &= x_k + \beta_k (x_k - x_{k-1}), & \text{momentum step} \\
x_{k+1} &= P_{\mathcal{X}} \left(y_k - \alpha_k \nabla f(y_k) \right). & \text{projected gradient step}
\end{align*}
$$

This is a special case of the accelerated proximal gradient method (a.k.a. fast iterative shrinkage-thresholding algorithm, FISTA), which applies to problems of the form

$$
\min_{x \in \mathbb{R}^d} f(x) + g(x), \tag{5}
$$
where \(f : \mathbb{R}^d \to \mathbb{R} \) is convex and smooth, and \(g : \mathbb{R}^d \to \overline{\mathbb{R}} \) is convex and lower semicontinuous with a computable proximal operator. Equation (5) is called a composite problem. As discussed in Lecture 1–2, the constrained problem \((P)\) corresponds to a special case of the composite problem \((5)\) with \(g(x) = I_X(x) \) being the indicator function of \(X \).

For details see the chapter from Beck’s book.

3.2 Other search direction?

Recall that for unconstrained problems, we may use some other search direction \(p_k \) instead of the negative gradient direction and still guarantee descent in function value (Lecture 7–8).

For constrained problem, can we use some other direction \(p_k \neq -\nabla f(x_k) \) in the update \(x_{k+1} = P_X\left(x_k + \frac{1}{\eta} p_k\right) \)? In general, doing so does not guarantee the descent property \(f(x_{k+1}) < f(x_k) \), even when \(p_k \) satisfies \(\langle p_k, -\nabla f(x_k) \rangle > 0 \). See below for an illustration.