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Lecture 16: Frank-Wolfe (aka Conditional Gradient) Method

Yudong Chen
1 Setup
Consider the constrained problem
mi)r} f(x), P)
xe

We still assume that f is L-smooth and convex, and X is closed, convex and non-empty.
In many settings, computing projection onto X’ is expensive, but linear optimization min,c y ¢ " x
is easy. This is typical when X is a polytope {x € R? : a/x < b;,i =1,...,m}.
Examples:
e Probability simplex and ¢; ball: Projection uses ©(dlogd) arithmetics operations (sorting).
Linear optimization oracle only takes ®(d) (finding the smallest element of the gradient c).
This is not a dramatic difference, but linear optimization has other benefits such as sparsity
of solution. See Section 5.

¢ For some polytopes, projection (exactly) is computationally hard, but LP is poly-time. E.g.,
matching polytope for a general graph with |V| vertices has ~ 2/V| constraints, but LP is
tractable (e.g., using Edmons’ algorithm).

Frank-Wolfe (FW) method uses a linear optimization oracle instead of a projection oracle.

2 Frank-Wolfe method

Algorithm 1 Frank-Wolfe

¢ Input: initial point xy € &, algorithm parameters a;, > 0, Vk

e Fork=0,1,...
vy = argmin (V f(x;), u),
uekX
Ag— a
Xk41 = flklxk + A*I;Uk,

where A, = Zi'c:o a;.

Observe that v, € X by definition, hence

_(1_ % i3
Xk = (1 Ak) X + Akvk e X, vk

by convexity of X and induction.
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3 Convergence rate of Frank-Wolfe

We introduce a new style of analysis.

1. We will maintain an upper bound Uy > f(xx;1) and alower bound Ly < f(x*). The quantity
Gy := Uy — Ly is an upper bound on the optimality gap f(xx11) — f(x*).

2. Recall that Ay := Zi'(:o a;, which is strictly increasing in k. We will show that
ArGy < A 1Gr1 + Ey,
where Ej is some “error” term. This implies that

< AoGo + Y5, Ei_

Gi A,

3. We will choose {a;} so that AgGy + Y5, E; grows slowly with k compared to Ay, hence G;
converges to 0 quickly.

Let us apply the above strategy to FW.

Upper bound:  Simply take Uy = f(x4.1). Then
Al — Ag-1Ux—1 = Arf (xk41) — Ar—1f (xx)-

Lower bound: We have

% 1 k % vexity of
f(x ) > A7k . Oai (f(xl) + <vf(xi)'x - xi>) weighted average of lco(zi/lefgloz,lr?dsfis also a lower bound
1=
1 1 &
> A ;)alf(xz) + A l;)aimm (Vf(xi),u—x;)
1 & 1 &
= Y aif(x;) + = Y ;i (Vf(xi), 0 — x;) definition of v;
k i=p ki=o
= Lk-
Then

AkLk — Akflkal = akf(xk) + 753 (Vf(xk),vk — xk> .

Evolution of A;Gy:  Define D := max, ycx [|x — y||,, which is the diameter of X'. Then for k > 1:

AxGr — Ax—1Gir—q
= (AU — Ag—1Uk—1) — (AxLg — Ax—1Lk—1)
=Ag (f (xx1) — f(xx)) — ax (V f(xx), vk — xx) Ai1 +ap = Ay

AL
<A (Vf(xg), Xk11 — Xk) + % k1 — ka% —a (Vf(xg), vk — xk) smoothness of f

2
() 2L 2
o o=l
2
a:L
< kZp? his is E
S04 <— thisis Ex 1
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where (i) holds because

Ak

aj k
X1 = X+ 50k = Ap(Xpp1 — %) = a(0p — X)) = X1 — X = 5 (0 — X).
Ak Ak Ag
(Exercise) Using similar argument as above, verify yourself that
agL
ApGy < =2=D2. 2)

2A9

Final bound: Summing (1) over k and (2), we get

k2
asL
A <y ZLp?
ka - =2A;
=0
LD?* & a2
< < — _b
— fl) = () <G < Y

We want to choose {a;} to make RHS to decay fast with k. Different choices work, but whenever
2 Z
you see something like %, you should try a; « i = A; o i? A—' 1. In particular, setting

a;=1i+1,wehave A; = % and hence

D2 koo2(i+1)? 2LD?
o < :
fre) = f(x7) < (k+1 )(k +2) l;) i+1)(i+2) ~ k+2

<2(k+1)

Therefore, we get an O <LTD2) convergence rate. Equivalently, FW achieves f(x;) — f(x*) < e after
at most O <L?D2) iterations.

4 Lower bound

Is it possible to beat FW? Not in the worst case, if we are only accessing X’ via linear optimization
oracle.

Theorem 1. Consider any algorithm that accesses the feasible set X only via a linear optimization oracle.
There exists an L-smooth convex function function f : R* — R such that this algorithm requires at least

d LD?
min
2" 16e
iterations (i.e., calls to the linear optimization oracle) to construct a point £ € X with f(£) — min,ey f(x) <
€. The lower bound applies even if f is strongly convex.

Proof sketch. Take f(x) = 1 [|x|;and X = {x ERY: x>0, x = 1} (the probability simplex).
Note that the smoothness parameter of f is L = 1, the diameter of X is D = 2, and f is strongly
convex. Moreover, the optimal solution and value are

1& §
—H;ei/ fx) =52
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where ¢; = (0,...,0,1,0,...,0) " denotes the i-th standard basis vector.
Linear optimization over the polytope X returns one of its vertex e;. After k iterations, one
would only uncover k basis vectors e; , ¢;,, . .., e;.. The best solution one can construct from them

is % =} Z;‘(=1 ¢;, hence
1/ 1 1
min{k,d} d)’

2
To make the RHS < ¢, weneedk>m1n{% %} {g,LmDEZ},

See Lan "13 for the complete proof. O

f(2) = f(x") =

5 Additional remarks

FW was out of favor for a long time, as it has sublinear convergence even when f is strongly
convex. However, there has been a recent upsurge of activity on FW.

¢ A sublinear rate is acceptable in many machine learning and data science problems with
large-scale and noisy data.

¢ The optimal solution vy of linear optimization lies at a vertex of the feasible set X'. Such a
solution often has certain sparsity properties not possessed by projection onto X'. Sparsity
often leads to better computational and statistical efficiency. For example:

— When & is the probability simplex or ¢; ball, each v; is 1-sparse (has only 1 nonzero
entry). Consequently, the iterate x; of FW is k-sparse since it is a convex combination
of {Ul, e ,Z)k}.

— The nuclear norm ||x|| .. of a matrix x is defined as the sum of its singular values. When
X = {x e R¥*4 . 12| e < R} is the nuclear norm ball, each v; is a rank-1 matrix, hence
Xy has rank at most k.

nuc

¢ Conservative Policy Iteration (CPI), a basic algorithm in Reinforcement Learning, is an incar-
nation of FW. See this short paper on the connection between several reinforcement learning
and constrained optimization algorithms (including CPI and FW).


https://arxiv.org/abs/1309.5550
https://arxiv.org/pdf/1910.08476.pdf
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