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Lecture 17: Nonsmooth Optimization

Yudong Chen

All methods we have seen so far work under the assumption that the objective function f is
smooth and in particular differentiable. In this lecture, we consider nonsmooth functions.

1 Nonsmooth optimization

Consider the problem
min
x∈X

f (x). (P)

Assumptions:

• f is M-Lipschitz continuous for some M ∈ (0, ∞), i.e.,

| f (x)− f (y)| ≤ M ∥x − y∥ , ∀x, y ∈ dom( f ),

under some norm ∥·∥, whose dual norm is ∥·∥∗. Here, ∥·∥ can be an arbitrary norm. Later
when we discuss the projected subgradient descent method, we will restrict to the ℓ2 norm.

• f is convex and minimized by some x∗ ∈ argminx∈X f (x).

• X is closed, convex and non-empty, and we can efficiently compute projection onto X .

In this setting, f does not need to be differentiable anymore. But, it is subdifferentiable.

2 Subdifferentiability

Definition 1. We say that a convex function f : Rd → R̄ is subdifferentiable at x ∈ dom( f ) if there
exists gx ∈ Rd such that

∀y ∈ Rd : f (y) ≥ f (x) + ⟨gx, y − x⟩ .

Such a vector gx is called a subgradient of f at x. The set of all subgradients of f at x is called the
subdifferential of f at x and denoted by ∂ f (x).

Example 1. Let f (x) = |x| be the absolute value function. Then

∂ f (x) =


{1} x > 0
{−1} x < 0
[−1, 1] x = 0
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Exercise 1. What is ∂ f (x) for the function f (x) = max{x, 0}? (a.k.a. Rectified Linear Unit, ReLU)

It is easy to see that if f is in fact convex and differentiable, then ∂ f (x) = {∇ f (x)}.

2.1 Properties of subdifferential (optional)

The subdifferential has many important properties. We discuss a few of them below; see Wright-
Recht Sections 8.2–8.4 for more.

Fact 1. Every convex lower semicontinuous function is subdifferentiable everywhere on the interior its
domain.

Example 2. Let IX (x) =

{
0, x ∈ X ,
∞, x /∈ X ,

be the indicator function of a closed convex nonempty

set X . Then for each x ∈ X , ∂IX (x) = NX (x), where NX (x) is the normal cone at x. With the
above relationship, we can unify the first-order optimality conditions for constrained problems
and unconstrained:

−∇ f (x) ∈ NX (x)
⇐⇒−∇ f (x) ∈ ∂IX (x)
⇐⇒0 ∈ ∇ f (x) + ∂IX (x)
⇐⇒0 ∈ ∂ ( f + IX (x)) .

For smooth functions, the gradient has a linearity property: ∇(a f + bh)(x) = a∇ f (x) +
b∇h(x). A similar property holds for the subdifferential.

Fact 2 (Linearity). For any two convex functions f , h and any positive constants a, b, we have

∂(a f + bh)(x) = a∂ f (x) + b∂(x) =
{

ag + bg′ : g ∈ ∂ f (x), g′ ∈ ∂h(x)
}

for x in the interior of dom( f ) ∩ dom(g).

Exercise 2. What is ∂ f (x) for the ℓ1 norm f (x) = ∥x∥1 := ∑d
i=1 |xi|?

2.2 Lipschitz continuity

The theorem below relates the subgradients and Lipschitz continuity.

Theorem 1. Let f : Rd → R̄ be a convex function. f is M-Lipschitz-continuous w.r.t a norm ∥·∥ if and
only if

(∀x ∈ dom( f )) (∀gx ∈ ∂ f (x)) : ∥gx∥∗ ≤ M.

Proof. =⇒ direction. Suppose f is M-Lipschitz. Fix any x and gx ∈ ∂ f (x). Define

y := x + argmax
u:∥u∥=1

⟨u, gx⟩ .

Then
⟨y − x, gx⟩ = max

u:∥u∥=1
⟨u, gx⟩ = ∥gx∥∗ .
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It follows that

∥gx∥∗ = ⟨gx, y − x⟩ ≤ f (y)− f (x) definition of subgradient
≤ M ∥y − x∥ = M. f is M-Lipschitz

⇐= direction. Assume that (∀x ∈ dom( f )) (∀gx ∈ ∂ f (x)) : ∥gx∥∗ ≤ M. Then for all y:

f (y) ≥ f (x) + ⟨gx, y − x⟩
=⇒ f (x)− f (y) ≤ ⟨gx, x − y⟩ ≤ ∥gx∥∗ ∥x − y∥ ≤ M ∥x − y∥ .

Switching the roles of x and y gives

f (y)− f (x) ≤
〈

gy, y − x
〉
≤
∥∥gy
∥∥
∗ ∥y − x∥ ≤ M ∥y − x∥ .

Combining gives | f (x)− f (y)| ≤ M ∥x − y∥.

3 Projected subgradient descent

For the rest of the lecture, we assume f is M-Lipschitz w.r.t. the Euclidean ℓ2 norm ∥·∥2.
We consider the following projected subgradient descent (PSubGD) method:

xk+1 = argmin
y∈X

{
ak ⟨gxk , y − xk⟩+

1
2
∥y − xk∥2

2

}
= PX (xk − akgxk) ,

where one may take any subgradient gxk from the set ∂ f (xk), and ak > 0 is the stepsize.
Without smoothness, we cannot get a descent lemma. In particular, it is not necessary true that

f (xk+1) ≤ f (xk). Nevertheless, we can still argue about convergence for the (weighted) averaged
iterate, defined as

xout
k :=

1
Ak

k

∑
i=0

aixi,

where Ak := ∑k
i=0 ai.

3.1 Convergence rate

We follow the proof strategy introduced in the last lecture. By convexity and subdifferentiability,
we have the lower bound

Lk :=
1

Ak

k

∑
i=0

ai ( f (xi) + ⟨gx, x∗ − xi⟩) ≤ f (x∗).

and the upper bound

Uk :=
1

Ak

k

∑
i=0

ai f (xi) ≥ f

(
1

Ak

k

∑
i=0

aixi

)
= f (xout

k ).
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Hence f (xout
k )− f (x∗) ≤ Uk − Lk := Gk. It follows that

AkGk − Ak−1Gk−1 = −ak ⟨gxk , x∗ − xk⟩
= ak ⟨gxk , xk − x∗⟩
= ak ⟨gxk , xk+1 − x∗⟩+ ak ⟨gxk , xk − xk+1⟩ .

Recall xk+1 = argminy∈X

{
ak ⟨gxk , y⟩+ 1

2 ∥y − xk∥2
2

}
. By 1st-order optimality condition of xk+1

(or equivalently, the minimum principle):

⟨akgxk + xk+1 − xk, u − xk+1⟩ ≥ 0, ∀u ∈ X .

In particular, for u = x∗:

ak ⟨gxk , xk+1 − x∗⟩ ≤ ⟨xk+1 − xk, x∗ − xk+1⟩

=
1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2 −
1
2
∥xk+1 − xk∥2

2 .

It follows that

AkGk − Ak−1Gk−1 ≤1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2

− 1
2
∥xk+1 − xk∥2

2 + ak ⟨gxk , xk − xk+1⟩

≤1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2

− 1
2
∥xk+1 − xk∥2

2 + ak M ∥xk − xk+1∥2 Cauchy-Schwarz, ∥gxk∥2 ≤ M

≤1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2 +
a2

k M2

2
. because − p2

2
+ pq ≤ q2

2
.

On the other hand, we also have

A0G0 = a0 ⟨gx0 , x0 − x∗⟩ ≤
a2

0M2

2
+

1
2
∥x0 − x∗∥2

2 −
1
2
∥x1 − x∗∥2

2 .

Summing over k and telescoping, we get

AKGK ≤ 1
2
∥x0 − x∗∥2

2 +
K

∑
k=0

a2
K M2

2
,

hence

f (xout
K )− f (x∗) ≤ GK ≤ ∥x0 − x∗∥2

2
2AK

+
M2 ∑K

k=0 a2
k

2AK
. (1)

It remains to choose the stepsize sequence {ak} to get a good convergence bound. Consider
using a constant stepsize ak = C, ∀k, then AK = C(K + 1). Then

f (xout
K )− f (x∗) ≤ ∥x0 − x∗∥2

2
2C(K + 1)

+
M2C

2
.

The RHS is minimized when the two RHS terms are balanced:

∥x0 − x∗∥2
2

C(K + 1)
=

M2C
2

⇐⇒ C =
∥x0 − x∗∥2

M
√

K + 1
.
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We conclude that with the choice ak =
∥x0−x∗∥2
M
√

K+1
, ∀k, it holds that

f (xout
K )− f (x∗) ≤ M ∥x0 − x∗∥2√

K + 1
.

This is slower than the 1
K rate for minimizing a smooth convex function.

3.2 Other considerations

The above choice of {ak} and the final bound require: (i) knowing ∥x0 − x∗∥2 ; (ii) fixing the total
number of iterations K before setting {ak}.

To address issue (i) , note that we usually know (an upper bound of) the diameter of X , i.e.,
D := maxx,y∈X ∥x − y∥2 . If D is finite, then ∥x0 − x∗∥ ≤ D. In this case we can choose ak =

D
M
√

K+1
, ∀k. Plugging into (1), we get

f (xout
K )− f (x∗) ≤

D2 + M2 ∑K
k=0 a2

k
2AK

≤ DM√
K + 1

.

To address issue (ii), we could instead choose ak = D
M
√

k+1
, which gives the slightly worst

bound

f (xout
K )− f (x∗) = O

(
DM log K√

K + 1

)
.

Finally, if D is unknown or unbounded, then we can use ak =
1√
k+1

. Note that this choice does
not require knowledge of the Lipschitz M either. In this case we have

f (xout
K )− f (x∗) = O


(
∥x0 − x∗∥2

2 + M2
)

log K

2
√

K + 1

 .
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