Lecture 17: Nonsmooth Optimization

Yudong Chen

All methods we have seen so far work under the assumption that the objective function f is smooth and in particular differentiable. In this lecture, we consider nonsmooth functions.

1 Nonsmooth optimization

Consider the problem

$$\min_{x \in \mathcal{X}} f(x). \tag{P}$$

Assumptions:

• *f* is *M*-Lipschitz continuous for some $M \in (0, \infty)$, i.e.,

$$|f(x) - f(y)| \le M ||x - y||, \quad \forall x, y \in \operatorname{dom}(f),$$

under some norm $\|\cdot\|$, whose dual norm is $\|\cdot\|_*$. Here, $\|\cdot\|$ can be an arbitrary norm. Later when we discuss the projected subgradient descent method, we will restrict to the ℓ_2 norm.

- *f* is convex and minimized by some $x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)$.
- \mathcal{X} is closed, convex and non-empty, and we can efficiently compute projection onto \mathcal{X} .

In this setting, *f* does not need to be differentiable anymore. But, it is *subdifferentiable*.

2 Subdifferentiability

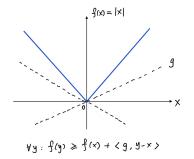
Definition 1. We say that a convex function $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ is subdifferentiable at $x \in \text{dom}(f)$ if there exists $g_x \in \mathbb{R}^d$ such that

$$\forall y \in \mathbb{R}^d$$
: $f(y) \ge f(x) + \langle g_x, y - x \rangle$.

Such a vector g_x is called a *subgradient* of f at x. The set of all subgradients of f at x is called the *subdifferential* of f at x and denoted by $\partial f(x)$.

Example 1. Let f(x) = |x| be the absolute value function. Then

$$\partial f(x) = \begin{cases} \{1\} & x > 0\\ \{-1\} & x < 0\\ [-1,1] & x = 0 \end{cases}$$



Exercise 1. What is $\partial f(x)$ for the function $f(x) = \max\{x, 0\}$? (a.k.a. Rectified Linear Unit, ReLU)

It is easy to see that if *f* is in fact convex and differentiable, then $\partial f(x) = \{\nabla f(x)\}$.

2.1 Properties of subdifferential (optional)

The subdifferential has many important properties. We discuss a few of them below; see Wright-Recht Sections 8.2–8.4 for more.

Fact 1. Every convex lower semicontinuous function is subdifferentiable everywhere on the interior its domain.

Example 2. Let $I_{\mathcal{X}}(x) = \begin{cases} 0, & x \in \mathcal{X}, \\ \infty, & x \notin \mathcal{X}, \end{cases}$ be the indicator function of a closed convex nonempty set \mathcal{X} . Then for each $x \in \mathcal{X}$, $\partial I_{\mathcal{X}}(x) = N_{\mathcal{X}}(x)$, where $N_{\mathcal{X}}(x)$ is the normal cone at x. With the above relationship, we can unify the first-order optimality conditions for constrained problems and unconstrained:

$$-\nabla f(x) \in N_{\mathcal{X}}(x) \Longleftrightarrow -\nabla f(x) \in \partial I_{\mathcal{X}}(x) \Leftrightarrow 0 \in \nabla f(x) + \partial I_{\mathcal{X}}(x) \Leftrightarrow 0 \in \partial (f + I_{\mathcal{X}}(x)).$$

For smooth functions, the gradient has a linearity property: $\nabla(af + bh)(x) = a\nabla f(x) + b\nabla h(x)$. A similar property holds for the subdifferential.

Fact 2 (Linearity). For any two convex functions f, h and any positive constants a, b, we have

$$\partial (af + bh)(x) = a\partial f(x) + b\partial(x) = \{ag + bg' : g \in \partial f(x), g' \in \partial h(x)\}$$

for x in the interior of $dom(f) \cap dom(g)$.

Exercise 2. What is $\partial f(x)$ for the ℓ_1 norm $f(x) = ||x||_1 := \sum_{i=1}^d |x_i|$?

2.2 Lipschitz continuity

The theorem below relates the subgradients and Lipschitz continuity.

Theorem 1. Let $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ be a convex function. f is M-Lipschitz-continuous w.r.t a norm $\|\cdot\|$ if and only if

$$(\forall x \in \operatorname{dom}(f)) (\forall g_x \in \partial f(x)) : \|g_x\|_* \le M.$$

Proof. \implies direction. Suppose *f* is *M*-Lipschitz. Fix any *x* and $g_x \in \partial f(x)$. Define

$$y := x + \operatorname*{argmax}_{u:||u||=1} \langle u, g_x \rangle.$$

Then

$$\langle y-x,g_x\rangle = \max_{u:\|u\|=1} \langle u,g_x\rangle = \|g_x\|_*.$$

It follows that

$$\|g_x\|_* = \langle g_x, y - x \rangle \le f(y) - f(x)$$
 definition of subgradient
$$\le M \|y - x\| = M.$$
 f is M-Lipschitz

 \Leftarrow direction. Assume that $(\forall x \in \text{dom}(f)) (\forall g_x \in \partial f(x)) : ||g_x||_* \leq M$. Then for all *y*:

$$f(y) \ge f(x) + \langle g_x, y - x \rangle$$

$$\implies f(x) - f(y) \le \langle g_x, x - y \rangle \le \|g_x\|_* \|x - y\| \le M \|x - y\|.$$

Switching the roles of *x* and *y* gives

$$f(y) - f(x) \le \langle g_y, y - x \rangle \le ||g_y||_* ||y - x|| \le M ||y - x||.$$

Combining gives $|f(x) - f(y)| \le M ||x - y||$.

3 Projected subgradient descent

For the rest of the lecture, we assume *f* is *M*-Lipschitz w.r.t. the Euclidean ℓ_2 norm $\|\cdot\|_2$.

We consider the following projected subgradient descent (PSubGD) method:

$$egin{aligned} x_{k+1} &= rgmin_{y\in\mathcal{X}} \left\{ a_k \left\langle g_{x_k}, y - x_k
ight
angle + rac{1}{2} \left\| y - x_k
ight\|_2^2
ight\} \ &= P_\mathcal{X} \left(x_k - a_k g_{x_k}
ight) ext{,} \end{aligned}$$

where one may take any subgradient g_{x_k} from the set $\partial f(x_k)$, and $a_k > 0$ is the stepsize.

Without smoothness, we cannot get a descent lemma. In particular, it is not necessary true that $f(x_{k+1}) \leq f(x_k)$. Nevertheless, we can still argue about convergence for the (weighted) *averaged iterate*, defined as

$$x_k^{\text{out}} := \frac{1}{A_k} \sum_{i=0}^k a_i x_i,$$

where $A_k := \sum_{i=0}^k a_i$.

3.1 Convergence rate

We follow the proof strategy introduced in the last lecture. By convexity and subdifferentiability, we have the lower bound

$$L_k := \frac{1}{A_k} \sum_{i=0}^k a_i \left(f(x_i) + \langle g_x, x^* - x_i \rangle \right) \le f(x^*).$$

and the upper bound

$$U_{k} := \frac{1}{A_{k}} \sum_{i=0}^{k} a_{i} f(x_{i}) \ge f\left(\frac{1}{A_{k}} \sum_{i=0}^{k} a_{i} x_{i}\right) = f(x_{k}^{\text{out}}).$$

$$\begin{aligned} A_k G_k - A_{k-1} G_{k-1} &= -a_k \left\langle g_{x_k}, x^* - x_k \right\rangle \\ &= a_k \left\langle g_{x_k}, x_k - x^* \right\rangle \\ &= a_k \left\langle g_{x_k}, x_{k+1} - x^* \right\rangle + a_k \left\langle g_{x_k}, x_k - x_{k+1} \right\rangle. \end{aligned}$$

Recall $x_{k+1} = \operatorname{argmin}_{y \in \mathcal{X}} \left\{ a_k \langle g_{x_k}, y \rangle + \frac{1}{2} \|y - x_k\|_2^2 \right\}$. By 1st-order optimality condition of x_{k+1} (or equivalently, the minimum principle):

$$\langle a_k g_{x_k} + x_{k+1} - x_k, u - x_{k+1} \rangle \geq 0, \quad \forall u \in \mathcal{X}.$$

In particular, for $u = x^*$:

$$\begin{aligned} a_k \left\langle g_{x_k}, x_{k+1} - x^* \right\rangle &\leq \left\langle x_{k+1} - x_k, x^* - x_{k+1} \right\rangle \\ &= \frac{1}{2} \left\| x_k - x^* \right\|_2^2 - \frac{1}{2} \left\| x_{k+1} - x^* \right\|_2^2 - \frac{1}{2} \left\| x_{k+1} - x_k \right\|_2^2 \end{aligned}$$

It follows that

$$\begin{aligned} A_{k}G_{k} - A_{k-1}G_{k-1} &\leq \frac{1}{2} \|x_{k} - x^{*}\|_{2}^{2} - \frac{1}{2} \|x_{k+1} - x^{*}\|_{2}^{2} \\ &- \frac{1}{2} \|x_{k+1} - x_{k}\|_{2}^{2} + a_{k} \langle g_{x_{k}}, x_{k} - x_{k+1} \rangle \\ &\leq \frac{1}{2} \|x_{k} - x^{*}\|_{2}^{2} - \frac{1}{2} \|x_{k+1} - x^{*}\|_{2}^{2} \\ &- \frac{1}{2} \|x_{k+1} - x_{k}\|_{2}^{2} + a_{k}M \|x_{k} - x_{k+1}\|_{2} \\ &\leq \frac{1}{2} \|x_{k} - x^{*}\|_{2}^{2} - \frac{1}{2} \|x_{k+1} - x^{*}\|_{2}^{2} + \frac{a_{k}^{2}M^{2}}{2}. \end{aligned}$$
 Cauchy-Schwarz, $\|g_{x_{k}}\|_{2} \leq M \\ &\leq \frac{1}{2} \|x_{k} - x^{*}\|_{2}^{2} - \frac{1}{2} \|x_{k+1} - x^{*}\|_{2}^{2} + \frac{a_{k}^{2}M^{2}}{2}. \end{aligned}$ because $-\frac{p^{2}}{2} + pq \leq \frac{q^{2}}{2}. \end{aligned}$

On the other hand, we also have

$$A_0G_0 = a_0 \langle g_{x_0}, x_0 - x^* \rangle \leq \frac{a_0^2 M^2}{2} + \frac{1}{2} \|x_0 - x^*\|_2^2 - \frac{1}{2} \|x_1 - x^*\|_2^2.$$

Summing over *k* and telescoping, we get

$$A_K G_K \leq \frac{1}{2} \|x_0 - x^*\|_2^2 + \sum_{k=0}^K \frac{a_K^2 M^2}{2},$$

hence

$$f(x_K^{\text{out}}) - f(x^*) \le G_K \le \frac{\|x_0 - x^*\|_2^2}{2A_K} + \frac{M^2 \sum_{k=0}^K a_k^2}{2A_K}.$$
(1)

It remains to choose the stepsize sequence $\{a_k\}$ to get a good convergence bound. Consider using a constant stepsize $a_k = C, \forall k$, then $A_K = C(K + 1)$. Then

$$f(x_K^{\text{out}}) - f(x^*) \le \frac{\|x_0 - x^*\|_2^2}{2C(K+1)} + \frac{M^2C}{2}$$

The RHS is minimized when the two RHS terms are balanced:

$$\frac{\|x_0 - x^*\|_2^2}{C(K+1)} = \frac{M^2 C}{2} \qquad \Longleftrightarrow \qquad C = \frac{\|x_0 - x^*\|_2}{M\sqrt{K+1}}.$$

We conclude that with the choice $a_k = \frac{\|x_0 - x^*\|_2}{M\sqrt{K+1}}$, $\forall k$, it holds that

$$f(x_K^{\text{out}}) - f(x^*) \le \frac{M \|x_0 - x^*\|_2}{\sqrt{K+1}}.$$

This is slower than the $\frac{1}{K}$ rate for minimizing a smooth convex function.

3.2 Other considerations

The above choice of $\{a_k\}$ and the final bound require: (i) knowing $||x_0 - x^*||_2$; (ii) fixing the total number of iterations *K* before setting $\{a_k\}$.

To address issue (i) , note that we usually know (an upper bound of) the diameter of \mathcal{X} , i.e., $D := \max_{x,y \in \mathcal{X}} ||x - y||_2$. If D is finite, then $||x_0 - x^*|| \leq D$. In this case we can choose $a_k = \frac{D}{M\sqrt{K+1}}$, $\forall k$. Plugging into (1), we get

$$f(x_K^{\text{out}}) - f(x^*) \le \frac{D^2 + M^2 \sum_{k=0}^K a_k^2}{2A_K} \le \frac{DM}{\sqrt{K+1}}.$$

To address issue (ii), we could instead choose $a_k = \frac{D}{M\sqrt{k+1}}$, which gives the slightly worst bound

$$f(x_K^{\text{out}}) - f(x^*) = O\left(\frac{DM\log K}{\sqrt{K+1}}\right).$$

Finally, if *D* is unknown or unbounded, then we can use $a_k = \frac{1}{\sqrt{k+1}}$. Note that this choice does not require knowledge of the Lipschitz *M* either. In this case we have

$$f(x_K^{\text{out}}) - f(x^*) = O\left(\frac{\left(\|x_0 - x^*\|_2^2 + M^2\right)\log K}{2\sqrt{K+1}}\right).$$