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Lecture 17: Nonsmooth Optimization

Yudong Chen

All methods we have seen so far work under the assumption that the objective function f is
smooth and in particular differentiable. In this lecture, we consider nonsmooth functions.

1 Nonsmooth optimization

Consider the problem

min f(x). (P)

Assumptions:
* fis M-Lipschitz continuous for some M € (0, ), i.e.,

f(x) = fWI <Mlx—yll, Vx,y € dom(f),

under some norm ||-||, whose dual norm is ||-||,. Here, ||-|| can be an arbitrary norm. Later
when we discuss the projected subgradient descent method, we will restrict to the ¢, norm.

* fis convex and minimized by some x* € argmin__, f(x).
* X is closed, convex and non-empty, and we can efficiently compute projection onto X

In this setting, f does not need to be differentiable anymore. But, it is subdifferentiable.

2 Subdifferentiability

Definition 1. We say that a convex function f : R? — R is subdifferentiable at x € dom(f) if there
exists gx € RY such that

vy R f(y) = f(x) + (8 y — ).
Such a vector g is called a subgradient of f at x. The set of all subgradients of f at x is called the
subdifferential of f at x and denoted by of (x).

Example 1. Let f(x) = |x| be the absolute value function. Then

Soo= x|
{1} x>0
of(x) =< {-1} x<0 - g
[-1,1] x=0
o/ X

vy fop = Feo+ <9, 9-x5
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Exercise 1. What is df(x) for the function f(x) = max{x,0}? (a.k.a. Rectified Linear Unit, ReLU)

It is easy to see that if f is in fact convex and differentiable, then of (x) = {Vf(x)}.

2.1 Properties of subdifferential (optional)

The subdifferential has many important properties. We discuss a few of them below; see Wright-
Recht Sections 8.2-8.4 for more.

Fact 1. Every convex lower semicontinuous function is subdifferentiable everywhere on the interior its
domain.

0, X, 1 .
Example 2. Let [y(x) = * Z e be the indicator function of a closed convex nonempty
oo, X ,
set X'. Then for each x € X, dly(x) = Ny(x), where Ny(x) is the normal cone at x. With the
above relationship, we can unify the first-order optimality conditions for constrained problems

and unconstrained:

—Vf(x) S Nx(x)
<~ — Vf(x) S BIX(x)
=0 € Vf(x) +dly(x)
=0€d(f + Ix(x)).

For smooth functions, the gradient has a linearity property: V(af + bh)(x) = aVf(x) +
bVh(x). A similar property holds for the subdifferential.

Fact 2 (Linearity). For any two convex functions f,h and any positive constants a, b, we have
o(af +bh)(x) = adf(x) +bo(x) = {ag+bg' : g € of (x),§' € oh(x)}
for x in the interior of dom(f) N dom(g).

Exercise 2. What is 9f (x) for the £, norm f(x) = || x|, := Y9, |xi?

2.2 Lipschitz continuity
The theorem below relates the subgradients and Lipschitz continuity.

Theorem 1. Let f : R? — R be a convex function. f is M-Lipschitz-continuous w.r.t a norm ||-|| if and
only if
(Vx € dom(f)) (Vgx € 9f (%)) [Igx]l, < M.

Proof. == direction. Suppose f is M-Lipschitz. Fix any x and g, € 9f(x). Define

Y = x + argmax (u, gx) .
u:||ul|=1
Then
(y—x,8x) = max (i,8x) = [|gx]]. -

w:||u||=1
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It follows that

lgxll, = (g0, ¥y —x) < f(y) — f(x) definition of subgradient
<Ml|y—x| =M. f is M-Lipschitz

<= direction. Assume that (Vx € dom(f)) (Vgx € 9f(x)) : ||gx||, < M. Then for all y:
fy) = f(x) + (g y — x)
= f(x) = f(y) < (8w x —y) < |gll, lx =yl < Mlx —y].

Switching the roles of x and y gives

FW) = F(x) < gy = %) < llgyll. lly = Il < Mly = x] .
Combining gives |f(x) — f(y)| < M|x —y||. O

3 Projected subgradient descent

For the rest of the lecture, we assume f is M-Lipschitz w.r.t. the Euclidean ¢, norm ||-||,.
We consider the following projected subgradient descent (PSubGD) method:

: 1 2
g1 = argmin 3 a (gx, Y — ) + 5 ||y — xll3
yeX

= Py (X — m8x,)

where one may take any subgradient g, from the set df(xy), and a; > 0 is the stepsize.
Without smoothness, we cannot get a descent lemma. In particular, it is not necessary true that
f(xks1) < f(xx). Nevertheless, we can still argue about convergence for the (weighted) averaged

iterate, defined as
k

Ak i=0

xzut

aiXi,
where Ay := YX_a;.

3.1 Convergence rate

We follow the proof strategy introduced in the last lecture. By convexity and subdifferentiability,
we have the lower bound

Zﬂl + (g, X" = x3)) < f(x7).

and the upper bound

k
U := jkgaif(xi) ( Za xl> = Out)
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Hence f(x") — f(x*) < Uy — Ly := Gy. It follows that

ArGr — A1Gro1 = —ax (Qur X° — Xg)
= ay (g Xk — X7)
= Ak (Qur X1 — X7) + Ak (S Xk — Xpt1) -

Recall x 1 = argminy

(or equivalently, the minimum principle):

cx {ak (gvoy) + 3 lly — kag} By 1st-order optimality condition of xj 1

(axgx, + Xkt1 — X, U — Xp41) >0, Vu e X.
In particular, for u = x*:
A (s X1 — X)) < (X1 — X, X — Xpep1)

2 1 2 1 2
[k — x5 — > | 2ks1 — X5 — P k1 — xk]l2 -

N[ —

It follows that
1 *12 1 12
AkGr = Ap-1Gr1 =5 [l = 273 = 5 [l — 27l
1
) k1 — xk||§ + g (s Xk — Xk41)
1 *1|2 1 %112
<5 v =275 = 5 v — 273
1
~5 || Xkr1 — xk||§ + M ||x — Xpg1||5 Cauchy-Schwarz, ||y, <M
apM? P’ 7’

. - = < .
5 because > +pq= >

1 » 1 2
PO P

On the other hand, we also have

a2M? 1 a2 1 112
3 o — I = 2 ot — 2.

AoGo = a9 (gxy, X0 — x*) <

Summing over k and telescoping, we get

1 . K a2 M?
AKGKSEHxO_x ||§+Z KZ ’
k=0

hence ) X
[l20 — x*[|3 n M Yo 93
2Ak 2Ak
It remains to choose the stepsize sequence {a;} to get a good convergence bound. Consider
using a constant stepsize ay = C, Vk, then Ax = C(K+ 1). Then

fO) = f(x") < Gk < (1)

x][2 2
Fag — fr) < ol M

The RHS is minimized when the two RHS terms are balanced:

k]2 2 %
lso— x5 _ M2C o s,

C(K+1) 2 MVK+1"
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We conclude that with the choice a; = %, Vk, it holds that

< M || xo _x*Hz_

f(x%ut> _f(x*) = \/m

This is slower than the  rate for minimizing a smooth convex function.

3.2 Other considerations

The above choice of {a;} and the final bound require: (i) knowing ||xo — x*||, ; (ii) fixing the total
number of iterations K before setting {ay }.

To address issue (i) , note that we usually know (an upper bound of) the diameter of X, i.e.,
D := maxyecx ||x —y|,. If D is finite, then ||xo — x*|| < D. In this case we can choose a; =

M\/LK?, Vk. Plugging into (1), we get
D>+ M?*Y{ ya2 _ DM
2OUt) _ £(y*) < k=0"k )
To address issue (ii), we could instead choose a;, = ML\/le, which gives the slightly worst
bound

DMlogK
@ — f(x*) =0 <> .
Finally, if D is unknown or unbounded, then we can use a; = —L_ Note that this choice does

Vi1
not require knowledge of the Lipschitz M either. In this case we have

fOg) = f(x*) =0 (("0"*3“‘42) IOgK)
) — f(x¥) = :

2vK+1
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